1997-98 Agrium Coated Urea Fertility Trial Applied on Tall Fescue in Riverside, California

Final Report

SUBMITTED BY:

Grant Klein Janet Hartin Eliseo Baltazar Salvadore Boites Bill Koo Robert Green

SPONSORED BY:

Agrium, Inc.

and

University of California, Riverside

January 1999

Objectives:

To evaluate the 12-month performance and nitrogen release, in terms of visual turfgrass color ratings and clipping yields, of four coated urea fertilizers and a standard urea fertilizer when applied on tall fescue in four applications at 1.0 lb N/1000 ft² and 1.5 lb N/1000 ft² (4.0 and 6.0 lb N/1000 ft² per year, respectively).

Cultivar:

Marathon III tall fescue.

Experimental Site:

A plot established at the UCR Turfgrass Field Research Center, Riverside, CA on April 3, 1996. The root zone is a native soil which is classified as a Hanford fine sandy loam. As of May 1997 the soil pH = 7.2; EC=0.98 mmhos/cm; soluble Ca=106.2 ppm; soluble Mg=19.5 ppm; soluble Na=73.6 ppm; SAR=2; ESP=2%; HCO₃=91.5 ppm; DTPA-extractable Fe=18.6 ppm; CEC=13.5 meq/100g; OM=0.71%; Olsen-P=33 ppm; exchangeable K=140 ppm; Sand=53%; Silt=34%; Clay=13% (see DANR methodology sheet for more detailed information).

Experimental Design:

Randomized complete block (RCB) design with four replications. Plot size was 4.5 x 6.0 ft. Overall analysis was a repeated measures design with fertilizer treatments as the main plot factor and rating date as the repeated measures factor.

Mowing:

Once per week with a rotary mower set at a 1.5-inch mowing height. Clippings collected.

Irrigation:

Plots irrigated to prevent visual drought symptoms and overwatering.

Fertilizer Treatments (see Table 2 for application dates):

- Coated urea fertilizers (*four applications per year*): 97-2A (43-0-0), 97-2C (43-0-0), 97-5C (43-0-0), Scotts PCSCU (40-0-0^{*}) * Note: first application was with Scotts PCSCU 38-0-0.
- Standard urea fertilizer (*four applications per year*): Urea (46-0-0)
- Two rates of nitrogen:
 1.0 lb N/1000 ft² per application and 1.5 lb N/1000 ft² per application (for a total of 4 lb N/1000 ft² per year and 6 lb N/1000 ft² per year, respectively)
- Check (no fertilizer)
- Initial treatment applications made on May 8 and 9, 1997 and final applications were made on February 13, 1998.

Measurements:

Visual turfgrass color ratings were taken every week beginning two weeks after initial treatment applications, using a 1 to 9 scale (1=brown, 5=acceptable, 9=darkest green tall fescue).

Clipping yields were taken once every two weeks, beginning three weeks after initial treatment applications. Yields were from 7 days of growth (clippings were taken with a 21-inch walk-behind mower equipped with a yield box attachment. This mower was not used for routine mowing). A subsample of clippings was collected from 27% of the total surface area of each plot. Clippings were dried for 48 hours in a forced-air oven maintained at 60°C, and then weighed.

Results:

Five fertilizers were evaluated for 1 year on Marathon III tall fescue (plot established on April 3, 1996 from seed). Each fertilizer was applied on May 8 to 9, 1997; July 21, 1997; October 21 to 22,1997; and February 13, 1998 at both 1.0 and 1.5 lb N/1000 ft² per application rate (4.0 and 6.0 lb N/1000 ft² per 12 months). Visual turfgrass color ratings were taken once per week from May 23, 1997 to May 8, 1998, while clipping yields were taken once per 2 weeks from May 28, 1997 to April 29, 1998. The visual turfgrass color scale was 1 to 9 (1=brown, 5=minimally acceptable, and 9=darkest green tall fescue). Please note that a rating of 6.5 to 7.5 would be considered quality tall fescue lawns, parks, recreational fields, and commercial areas.

In terms of visual turfgrass color ratings for the five fertilizer products applied at 4.0 and 6.0 lb N/1000 ft² per year, the 97-2A product had the best performance, while the 97-5C had the worst performance. This evaluation was made on three criteria: overall visual turfgrass color mean, data in Figure 3, and number of ratings dates a product was ranked the best and worst (data not shown). It should be noted that for an unknown reason, the visual turfgrass color ratings were not as high as we have come to expect when applying slow-release fertilizers at these rates to fall fescue. Typically, 6.0 lb N/1000 ft² per year of a slow-release N source would result in a 6.5 annual turfgrass quality rating. Visual turfgrass color scores for tall fescue are typically similar.

In terms of clipping yield, all products were similar, with the exception of Scotts PCSCU, which caused a relatively lower production of clipping yields at the 6.0 lb N/1000 ft² per year rate.

Ι	¹ 8	² 6	³ 7	⁴ 4	⁵ 9	6 1	⁷ 5	⁸ 10	[°] 11	¹⁰ 3	
	¹¹ 11	¹² 8	¹³ 2	¹⁴ 3	¹⁵ 9	¹⁶ 5	¹⁷ 4	¹⁸ 11	¹⁹ 7	²⁰ 2	тт
	²¹ 1	22	23	24	25	26	27	²⁸ 8	²⁹ 10	³⁰ 1	11
III	³¹ 7	³² 2	³³ 9	³⁴ 1 1	³⁵ 5	³⁶ 8	³⁷ 6	38	39	⁴⁰ 6	
	⁴¹ 4	42	⁴³ 5	44	⁴⁵ 4	⁴⁶ 3	47	48	49	50	
	⁵¹ 3	⁵² 6	⁵³ 10	⁵⁴ 1	⁵⁵ 2	⁵⁶ 7	⁵⁷ 9	⁵⁸ 10	59	60	IV
	61	62	63	64	65	66	67	68	69	70	

Figure 1. Plot plan for the 1997-98 Agrium Coated Urea Fertility Trial Applied on Tall Fescue in Riverside, California.

Unused (skip) plots

TREATMENTS

1. 97-2A (43-0-0):	4 lb N/1000 ft²/year
2. 97-2A (43-0-0):	6 lb N/1000 ft²/year
3. 97-2C (43-0-0):	4 lb N/1000 ft²/year
4. 97-2C (43-0-0):	6 lb N/1000 ft²/year
5. 97-5C (43-0-0):	4 lb N/1000 ft²/year
6. 97-5C (43-0-0):	6 lb N/1000 ft²/year
 7. Urea (46-0-0): 8. Urea (46-0-0): 9. PCSCU (40-0-0) 10. PCSCU (40-0-0) 11. Check 	4 lb N/1000 ft²/year 6 lb N/1000 ft²/year 4 lb N/1000 ft²/year 6 lb N/1000 ft²/year 0 lb N/1000 ft²/year

Date	Activity
May 8 and 9, 1997	Initial application of fertility treatments.
May 15, 1997	Application of Triple Super Phosphate 0-45-0 at 1 lb P ₂ O ₅ /1000 ft ² .
May 23, 1997	Application of potassium sulfate 0-0-62 at 1 lb $K_2O/1000$ ft ² .
	Initial visual turfgrass color rating (subsequent ratings every week).
May 28, 1997	Initial clipping yield samples taken (subsequently taken every two weeks).
July 21, 1997	Second application of fertility treatments.
October 21 and 22, 1997	Third application of fertility treatments.
February 13, 1998	Fourth (final) application of fertility treatments.
April 29, 1998	Final clipping yield sample taken.
May 8, 1998	Final visual turfgrass color rating.

Table 2. Calendar of major activities for the 1997-98 Agrium Coated Urea Fertility Trial on Tall Fescue.

Product (N-P ₂ O ₅ -K ₂ 0 Analysis)	Annual Rate (lb N/1000 ft ²)	May 23 1997	May 30 1997	Jun 06 <i>1997</i>	Jun 13 <i>1997</i>	Jun 27 1997	Jul 02 <i>1997</i>	Jul 11 <i>1997</i>	Jul 18 <i>1997</i>	Aug 01 <i>1997</i>	Aug 08 1997	Aug 15 <i>1997</i>	Aug 22 1997	Aug 29 1997	Sep 05 1997	Sep 12 1997	Sep 19 <i>1997</i>
97-2A	4	6.1	6.1	6.2	6.3	6.1	6.3	6.1	6.3	6.6	6.6	6.6	6.4	6.4	6.3	6.3	5.9
(43-0-0)	6	6.1	6.2	6.3	6.3	6.1	6.3	6.2	6.3	6.6	6.7	6.6	6.6	6.4	6.4	6.3	6.0
97-2C (43-0-0)	4	6.0	6.0	6.2	6.2	6.0	6.2	6.1	6.2	6.3	6.4	6.3	6.3	6.3	6.3	6.3	5.9
	6	6.0	6.2	6.4	6.4	6.3	6.4	6.2	6.3	6.6	6.6	6.4	6.4	6.4	6.3	6.3	6.1
97-5C (43-0-0)	4	5.9	6.0	6.1	6.1	6.1	6.3	6.1	6.1	6.1	6.2	6.3	6.1	6.1	6.3	6.3	6.0
	6	6.0	6.0	6.1	6.3	6.2	6.4	6.3	6.3	6.5	6.5	6.4	6.4	6.3	6.3	6.3	6.0
Uron	4	6.2	6.3	6.2	6.1	6.1	6.1	6.0	6.3	6.6	6.6	6.4	6.3	6.3	6.2	6.1	5.8
(46-0-0)	6	6.3	6.3	6.3	6.3	5.8	6.1	5.9	6.3	6.6	6.8	6.6	6.4	6.4	6.2	6.1	5.9
DCSCU	4	5.9	5.9	6.2	6.1	6.1	6.1	6.2	6.3	6.5	6.5	6.4	6.3	6.3	6.2	6.3	5.9
(40-0-0)	6	6.1	6.1	6.3	6.2	6.1	6.2	6.2	6.5	6.8	6.8	6.7	6.4	6.4	6.3	6.3	5.9
Check	0	5.9	5.9	5.8	5.7	5.6	5.8	5.6	5.9	5.4	5.5	5.4	5.4	5.4	5.4	5.3	5.2
	LSD P≤0.05	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.4	0.3	0.3	0.3	0.3	0.4
	C.V. (%)	3.0	2.7	2.1	2.1	2.8	2.8	3.0	2.2	3.4	3.2	3.9	3.3	3.3	3.4	3.3	4.3

Table 3. Visual turfgrass color ratings during the 1997-98 Agrium Coated Urea Fertility Trial on Tall Fescue. Scale: 1-9 (1=brown, 5=minimally acceptable, 9=darkest green tall fescue).

Product (N-P ₂ O ₅ -K ₂ O Analysis)	Annual Rate (Ib N/1000 ft ²)	Sep 26 1997	Oct 03 1997	Oct 10 <i>1997</i>	Oct 17 1997	Oct 24 1997	Oct 31 1997	Nov 07 1997	Nov 14 1997	Nov 21 1997	Dec 05 1997	Dec 12 1997	Dec 19 1997	Jan 02 <i>1998</i>	Jan 09 <i>199</i> 8	Jan 16 <i>1998</i>	Jan 23 1998
97-2A	4	5.9	5.9	5.8	5.7	5.6	5.8	6.1	6.1	6.1	6.0	5.8	5.7	5.6	5.4	5.2	5.2
(43-0-0)	6	6.1	5.9	5.9	5.9	5.8	6.4	6.8	6.5	6.4	6.4	6.2	6.3	6.2	6.1	5.9	5.9
97-2C (43-0-0)	4	5.9	5.8	5.6	5.6	5.4	5.8	5.9	5.8	5.9	5.8	5.8	5.7	5.5	5.4	5.4	5.4
	6	5.8	5.7	5.8	5.7	5.7	5.9	6.2	6.2	6.1	6.1	5.9	5.8	5.6	5.6	5.6	5.5
97-5C (43-0-0)	4	5.9	5.8	5.7	5.8	5.5	5.7	6.0	5.9	5.8	5.8	5.8	5.4	5.4	5.4	5.3	5.0
	6	5.9	5.8	5.7	5.7	5.6	5.9	6.2	5.9	5.9	5.9	5.8	5.8	5.6	5.6	5.5	5.4
Uraa	4	5.8	5.7	5.6	5.6	5.6	6.4	6.8	6.4	6.3	6.2	5.9	5.9	5.6	5.6	5.4	5.1
(46-0-0)	6	5.9	5.8	5.8	5.6	5.6	6.8	7.1	6.9	6.8	6.8	6.5	6.4	6.0	5.8	5.6	5.3
DCSCU	4	5.9	5.9	5.9	5.8	5.8	6.4	6.6	6.5	6.4	6.4	6.1	6.0	5.7	5.6	5.4	5.3
(40-0-0)	6	6.0	5.8	5.8	5.8	5.6	6.3	6.3	6.4	6.3	6.3	5.9	5.9	5.7	5.4	5.3	5.3
Check	0	5.1	5.1	5.4	5.2	5.1	4.9	4.8	4.7	4.6	4.5	4.5	4.3	4.2	4.2	4.1	3.9
	LSD P≤0.05	0.4	0.4	NS	NS	0.3	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.6	0.5	0.6	0.5
	C.V. (%)	4.8	4.8	5.7	4.9	4.1	5.3	5.7	5.1	4.8	4.2	4.3	5.2	7.2	7.0	7.8	6.5

Table 3 (continued). Visual turfgrass color ratings during the 1997-98 Agrium Coated Urea Fertility Trial on Tall Fescue. Scale: 1-9 (1=brown, 5=minimally acceptable, 9=darkest green tall fescue).

Product (N-P ₂ O ₅ -K ₂ O Analysis)	Annual Rate (Ib N/1000 ft ²)	Jan 30 <i>1998</i>	Feb 13 <i>1998</i>	Feb 20 1998	Feb 27 1998	Mar 06 <i>1998</i>	Mar 20 1998	Mar 27 1998	Apr 03 1998	Apr 10 <i>1998</i>	Apr 17 <i>1998</i>	Apr 24 1998	May 08 1998	Overall
97-2A	4	5.1	5.1	5.4	5.6	6.5	6.6	6.4	6.2	6.1	5.9	6.0	5.8	6.0
(43-0-0)	6	5.8	5.9	5.9	5.9	6.8	6.4	6.3	6.1	6.1	6.1	6.0	5.8	6.2
97-2C	4	5.2	5.1	5.3	5.5	6.6	6.4	6.4	6.4	6.3	5.9	5.9	5.9	5.9
(43-0-0)	6	5.4	5.6	5.7	5.9	6.9	6.7	6.4	6.3	6.3	6.2	6.1	6.0	6.1
97-5C	4	4.9	5.1	5.3	5.5	6.4	6.4	6.4	6.1	6.0	5.8	5.8	5.8	5.9
(43-0-0)	6	5.3	5.5	5.8	5.8	6.7	6.6	6.4	6.3	6.2	6.1	6.1	6.0	6.0
Urea	4	4.9	4.8	5.3	5.8	6.9	6.8	6.4	6.3	6.1	6.0	5.9	5.7	6.0
(46-0-0)	6	5.2	5.3	5.8	5.9	7.0	6.8	6.6	6.3	6.2	6.1	6.0	5.7	6.2
PCSCU	4	5.1	4.9	5.3	5.4	6.7	6.3	6.2	5.9	5.9	5.8	5.8	5.6	6.0
(40-0-0)	6	5.2	5.1	5.6	5.9	6.9	6.9	6.8	6.4	6.3	6.1	5.9	5.8	6.1
Check	0	3.9	4.0	4.4	4.6	5.2	5.3	5.5	5.3	5.3	5.3	5.1	4.9	5.1
	LSD P≤0.05	0.5	0.5	0.5	0.5	0.7	0.6	NS	0.6	NS	NS	0.5	0.5	0.1
	C.V. (%)	6.5	7.2	6.7	6.7	7.0	6.8	7.3	6.5	6.3	6.8	6.3	5.6	4.8

Table 3 (continued). Visual turfgrass color ratings during the 1997-98 Agrium Coated Urea Fertility Trial on Tall Fescue. Scale: 1-9 (1=brown, 5=minimally acceptable, 9=darkest green tall fescue).

Figure 2. 1997-1998 Agrium coated urea fertility trial on tall fescue: visual color ratings (scale: 1-9; 9=darkest green tall fescue).

Figure 3. 1997-1998 Agrium coated urea fertility trial on tall fescue: number of rating dates within three levels visual turfgrass color.

Product (N-P ₂ O ₅ -K ₂ 0 Analysis)	Annual Rate (1b N/1000 ft ²)	May 28 1997	Jun 11 <i>1997</i>	Jun 27 1997	Jul 09 <i>1997</i>	Jul 23 1997	Aug 06 <i>1997</i>	Aug 20 1997	Sep 03 1997	Sep 17 <i>1997</i>	Oct 01 1997	Oct 15 1997	Oct 29 1997	Nov 12 1997	Dec 04 1997	Jan 16 <i>1998</i>	Jan 30 <i>1998</i>
97-2A (43-0-0)	4	13.25	8.14	7.68	4.72	2.71	5.92	10.87	6.43	5.95	9.19	6.36	2.32	2.82	1.99	0.06	0.06
	6	17.78	11.98	7.99	3.95	2.40	9.77	8.30	6.04	6.35	8.28	6.65	2.08	3.44	2.05	0.04	0.14
97-2C (43-0-0)	4	11.77	9.13	7.26	4.73	2.62	6.13	8.92	5.75	7.38	10.08	5.88	2.13	2.95	0.78	0.04	0.03
	6	12.52	11.95	6.81	4.67	3.32	5.52	9.36	7.61	8.99	11.35	6.12	2.36	4.14	1.88	0.04	0.06
97-5C (43-0-0)	4	12.69	8.09	7.07	6.23	2.97	4.89	6.47	5.73	7.39	8.94	6.71	1.82	2.72	1.37	0.04	0.04
	6	16.88	12.25	8.20	5.81	3.27	6.86	9.03	7.10	9.82	9.17	8.20	2.54	3.61	1.56	0.09	0.08
Linco	4	15.12	9.16	7.17	4.43	2.28	8.63	7.29	4.37	5.62	8.10	5.81	1.19	3.30	1.60	0.03	0.06
(46-0-0)	6	21.61	11.03	6.93	4.64	4.25	6.68	7.97	5.14	5.39	8.23	5.90	2.29	3.67	2.09	0.08	0.15
DCSCU	4	14.88	8.72	7.05	4.40	4.42	10.46	9.02	6.62	7.72	10.23	7.33	2.00	3.65	1.82	0.05	0.06
(40-0-0)	6	12.87	7.37	7.12	4.22	3.08	10.97	12.14	6.89	7.95	9.03	6.83	2.41	4.49	2.00	0.06	0.05
Check	0	10.56	6.81	5.99	2.61	4.09	4.15	4.08	2.75	3.48	5.60	2.96	1.10	1.34	0.64	0.03	0.02
	LSD P≤0.05	5.38	3.88	NS	NS	NS	3.16	4.06	2.15	2.23	NS	2.29	NS	NS	NS	NS	0.07
	C.V. (%)	25.6	22.3	34.0	31.2	38.7	30.1	33.1	25.4	22.4	36.5	25.2	34.8	36.6	48.3	77.4	77.9

Table 4. Clipping yields (g dry clippings/7.44 ft² per 7 days) during the 1997-98 Agrium Coated Urea Fertility Trial on Tall Fescue.

Product (N-P ₂ O ₅ -K ₂ 0 Analysis)	Annual Rate (Ib N/1000 ft ²)	Feb 11 <i>1998</i>	Feb 25 1998	Mar 11 <i>1998</i>	Apr 03 1998	Apr 15 <i>1998</i>	Apr 29 1998	Accum.
97-2A	4	0.15	1.18	5.07	8.17	7.07	6.62	116.73
(43-0-0)	6	0.44	3.71	8.18	11.45	14.44	11.54	147.00
97-2C	4	0.62	1.36	2.93	8.68	8.14	7.49	114.80
(43-0-0)	6	0.64	2.97	5.80	11.86	13.80	13.27	145.04
97 - 5C	4	0.26	2.20	3.43	9.39	8.62	7.72	114.79
(43-0-0)	6	0.46	3.17	5.99	10.77	10.84	11.32	147.02
Urea	4	0.28	2.08	5.54	7.81	9.04	7.95	116.86
(46-0-0)	6	0.42	3.86	9.11	15.95	10.49	7.84	143.72
PCSCU	4	0.51	1.86	3.32	6.65	8.76	6.81	126.34
(40-0-0)	6	0.30	2.05	4.52	8.80	7.64	6.22	127.01
Check	0	0.12	0.62	0.77	3.43	4.14	4.35	69.64
	LSD P≤0.05	NS	2.03	3.67	5.98	4.35	3.83	
	C.V. (%)	88.9	61.7	51.1	44.3	32.2	32.0	

Table 4 (*continued*). Clipping yields (g dry clippings/7.44 ft² per 7 days) during the 1997-98 Agrium Coated Urea Fertility Trial on Tall Fescue.

Figure 4. 1997-1998 Agrium coated urea fertility trial on tall fescue: clipping yields (g dry clippings / 7 days / 7.44 ft²).

Date	Accumulative ET _o y (mm/week)	Accumulative Precipitation (mm/week)	Average Daily Solar Radiation (W/m²/day)	Average Temper (°C)	e Daily rature (⁰ F)	Average Daily Relative Humidity (%)	Average I Temper 15.2 cm (⁰ C)	Daily Soil ature at Depth (⁰ F)
05/04/97 - 05/10	42.30	0.00	330	22	72	46	23	73
05/11 - 05/17	38.60	0.00	288	22	72	55	24	75
05/18 - 05/24	36.99	0.00	284	20	68	56	24	75
05/25 - 05/31	45.91	0.00	341	24	75	48	24	75
06/01 - 06/07	36.85	0.00	290	20	68	55	24	75
06/08 - 06/14	31.81	0.00	261	19	66	55	23	73
06/15 - 06/21	42.57	0.00	338	22	72	55	24	75
06/22 - 06/28	40.88	0.00	328	21	70	55	24	75
06/29 - 07/05	48.29	0.00	361	25	77	43	24	75
07/06 - 07/12	42.99	1.00	305	22	72	54	26	79
07/13 - 07/19	41.88	0.00	317	24	75	51	26	79
07/20 - 07/26	34.71	0.00	268	22	72	56	26	79
07/27 - 08/02	41.41	0.00	311	23	73	49	25	77
08/03 - 08/09	44.12	0.00	301	28	82	45	27	81
08/10 - 08/16	37.10	0.00	283	21	70	55	25	77
08/17 - 08/23	37.96	0.00	302	26	79	59	26	79
08/24 - 08/30	36.67	0.00	302	25	77	70	25	77
08/31 - 09/06	35.64	0.00	269	27	81	69	26	79
09/07 - 09/13	33.87	0.00	274	25	77	70	26	79
09/14 - 09/20	25.74	4.00	209	24	75	59	25	77
09/21 - 09/27	27.66	15.00	203	24	75	54	24	75
09/28 - 10/04	27.28	0.00	216	23	73	61	25	77
10/05 - 10/11	22.73	0.00	200	18	64	56	22	72
10/12 - 10/18	33.38	0.00	229	22	72	36	19	66
10/19 - 10/25	21.25	0.00	180	17	63	54	19	66
10/26 - 11/01	22.30	0.00	193	18	64	47	17	63
11/02 - 11/08	20.49	0.00	171	20	68	50	18	64

Table 5. Weather measurements collected^z from May 4, 1997 to May 9, 1998 in Riverside, CA.

^z Weather data collected from an on-site CIMIS weather station located approximately 355 feet from the study plot.

 y ET_o = Reference evapotranspiration.

Date	Accumulative ET。 ^y (mm/week)	Accumulative Precipitation (mm/week)	Average Daily Solar Radiation (W/m ² /day)	Averag Tempe (°C)	e Daily rature (⁰ F)	Average Daily Relative Humidity (%)	Average I Tempera 15.2 cm (^o C)	Daily Soil ature at Depth (⁰ F)
11/09 - 11/15	9.72	11.00	109	13	55	62	17	63
11/16 - 11/22	14.39	0.00	148	15	59	54	16	61
11/23 - 11/29	10.30	12.00	121	13	55	59	15	59
11/30 - 12/06	9.92	63.00	106	12	54	57	14	57
12/07 - 12/13	17.76	10.00	133	11	52	43	11	52
12/14 - 12/20	15.66	2.00	135	12	54	47	11	52
12/21 - 12/27	19.13	3.00	143	10	50	43	9	48
12/28 - 01/03/98	13.50	1.00	116	16	61	54	11	52
01/04 - 01/10	8.82	53.00	102	10	50	58	11	52
01/11 - 01/17	9.16	1.00	108	12	54	63	13	55
01/18 - 01/24	12.75	2.00	150	12	54	55	13	55
01/25 - 01/31	13.49	9.00	146	12	54	57	13	55
02/01 - 02/07	11.15	83.00	106	11	52	58	13	55
02/08 - 02/14	13.62	36.00	150	11	52	59	14	57
02/15 - 02/21	13.30	27.00	161	10	50	56	13	55
02/22 - 02/28	14.66	84.00	171	11	52	58	13	55
03/01 - 03/07	18.78	9.00	162	13	55	54	15	59
03/08 - 03/14	25.09	18.00	240	15	59	53	15	59
03/15 - 03/21	21.46	0.00	199	15	59	58	17	63
03/22 - 03/28	20.37	29.00	177	14	57	57	17	63
03/29 - 04/04	18.19	17.00	190	9	48	57	14	57
04/05 - 04/11	26.55	2.00	252	13	55	55	15	59
04/12 - 04/18	29.61	1.00	275	13	55	53	16	61
04/19 - 04/25	36.29	0.00	290	18	64	53	19	66
04/26 - 05/02	40.22	0.00	319	19	66	53	20	68
05/03 - 05/09	23.26	13.00	202	16	61	56	21	70

Table 5 (*continued*). Weather measurements collected^z from May 4, 1997 to May 9, 1998 in Riverside, CA.

^z Weather data collected from an on-site CIMIS weather station located approximately 355 feet from the study plot.

 y ET_o = Reference evapotranspiration.

Figure 5. Environmental data for Riverside, CA for 5/04/97 to 5/09/98.

Average weekly temperatures for air (maximum, minimum, and average) and soil (15 cm depth).

Note: The soil and plant analyses information excerpted from the DANR Analytical Laboratory methodology and citation handout dated 3/5/97. The water analyses information was provided by DANR in May 1998 upon request.

SOIL SALINITY / ALKALINITY / TOXICITY ANALYSES

- **pH** Semi-quantifies soil pH using the saturated paste and pH meter. Determination: U.S. Salinity Laboratory Staff, 1954.
- **EC**_e Semi-quantifies the amount of soluble salts in the saturation paste extract using conductivity meter. Determination: Rhoades, 1982.
- **HCO₃**, Quantification of the bicarbonate (HCO₃) and carbonate (CO₃) in the saturated paste extract by titration with 0.05 CO₃ Normal H_2SO_4 acid. Determination: Nelson, 1982.
- Cl Amount of chloride based on electrometric titration of the saturated paste extract by chloridometer. Determination: Rhoades, 1982.
- **B** ICP-AES determination of amount of boron in saturated paste extract. Extraction: Rhoades, 1982; determination: Soltanpour, et al, 1982.
- **Ca, Mg** Amounts of soluble calcium and magnesium in the saturated paste extract by inductively coupled plasmic atomic emission spectrometry. Extraction: Lanyon and Heald, 1982; determination, Soltanpour, et al, 1982.
- Na, Amounts of soluble potassium and sodium in the saturated paste extract by emission spectometry. Determination:K(sol) Knudsen, Peterson and Pratt, 1982.
- **SAR** Sodium Absorption Ratio estimated calculation from calcium, magnesium and sodium on saturated paste extract. Calculation: U.S. Salinity Laboratory, 1954.
- **ESP** Estimated value for exchangeable sodium percentage. Calculated from SAR values. Calculation: U.S. Salinity Laboratory, 1954.

SOIL FERTILITY ANALYSES

- X-K, Equilibrium extraction of soil for plant available exchangeable potassium, sodium, calcium and magnesium using
- X-Na, 1 Normal ammonium acetate (pH 7.0) and subsequent determination by atomic absorption/emission spectrometry.
- X-Ca, Extraction: Knudsen, Peterson and Pratt, 1982 and Lanyon and Heald, 1982. Measurement of exchangeable minerals
- **X-Mg** residing on the soil colloid exchange sites is by displacement with buffered ammonium acetate solution. Determination: Franson, 1985.
- Cu, Zn Equilibrium extraction of soil using DTPA and subsequent determination by atomic absorption spectrometry. Extraction:Mn, Fe Lindsay and Norvell, 1978; determination: Franson, 1985.
- **Olsen-P** Extractable phosphate based on alkaline extraction by 0.5 Normal NaHCO₃. Plant available phosphate for soil with pH greater than 6.5 by ascorbic acid reduction of phosphomolybdate complex and measurement by spectrophotometry. Extraction and determination: Olsen, et al, 1954.

SOIL PHYSIO-CHEMICAL ANALYSES

- **OM** Organic Matter by potassium dichromate reduction of organic carbon and subsequent spectrophotometric measurement (modified Walkley-Black). Determination: Nelson and Sommers, 1982.
- CEC Cation Exchange Capacity by barium acetate saturation and calcium replacement. Determination: Rible and Quick, 1960 and Janitzky, 1986.
- **PSA** Particle Size Analysis of sand, silt and clay in soil suspension by hydrometer. Determination: Gee and Bauder, 1979.

PLANT TISSUE ANALYSES

- Ν Total Nitrogen by Nitrogen Gas Analyzer utilizing induction furnace and thermal conductivity (LECO FP-428). Sample size 100 mg, results corrected to 100% dry matter basis. Determination: Sweeney, 1989.
- Total K, extraction by 2% acetic acid extraction. Quantitative determination by atomic emission spectrometry (AES). K Extraction: Johnson and Ulrich, 1959; determination: Franson, 1985.

B, Ca, Totals, microwave acid digestion/dissolution of sample. Quantitative determination by atomic emission spectroscopy Mg, Mo, (ICP-AES). Digestion: Sah and Miller, 1992.

P, S

Totals, microwave acid digestion/dissolution of sample. Quantitative determination by atomic emission spectrometry Na (AES). Digestion: Sah and Miller, 1992; determination, Franson, 1985.

Cu, Fe, Totals, microwave acid digestion/dissolution of sample. Quantitative determination by atomic emission spectrometry Mn, Zn (AAS). Digestion: Sah and Miller, 1992; determination, Franson, 1985.

WATER SALINITY / ALKALINITY / TOXICITY ANALYSES

pH	Semi-quantifies H ₂ O pH using the pH meter. U.S. Salinity Laboratory, 1954.
ECe	Semi-quantifies the amount of soluble salts in H ₂ O using the conductivity meter. Rhoades, 1982.
HCO ₃ , CO ₃	Quantification of the bicarbonate (HCO ₃) and carbonate (CO ₃) in H_2O by titration with 0.05 Normal H_2SO_4 acid. Rhoades, 1982.
Cl	Amount of chloride based on electrometric titration of H_2O by chloridometer. Rhoades, 1982.
Р	Quantitative determination by ascorbic acid reduction of phosphomolybdate complex and quantitative measurement by flow injection analysis. Franson, 1985.
SO ₄ -S	Amount of sulfate sulfur present in H ₂ O, by inductively coupled plasmic emission spectrometry. Soltanpour, et al, 1982.
В	ICP-AES determination of amount of boron in H ₂ O. Soltanpour, et al, 1982.
Ca, Mg	Amounts of soluble calcium and magnesium in H_2O by inductively coupled plasmic atomic emission spectrometry. Soltanpour, et al, 1982.
Na, K (sol)	Amounts of soluble potassium and sodium in H ₂ O by emission spectrometry. Knudsen, 1982.
SAR	Sodium Absorption Ratio estimated calculation from calcium, magnesium and sodium in H ₂ O. Calculation: U.S. Salinity Laboratory Staff, 1954.
ESP	Estimated value for exchangeable sodium percentage. Calculated from SAR values. Calculation: U.S. Salinity Laboratory Staff, 1954.
NO ₃ -N, NH ₄ -N	Determination by diffusion-conductivity analyzer. Carlson, 1978.
TKN	Total Kjeldahl Nitrogen in H_2O . Total reduced nitrogen by the wet oxidation of H_2O using standard Kjeldahl procedure with sulfuric acid and digestion catalyst. Carlson, 1978.
Zn, Cu, Mn, Fe	Determination by atomic absorption spectrometry. DeBoer and Reisenauer, 1973.
Se	Total selenium using nitric/perchloric acid digestion/dissolution of sample. Quantitative determination by vapor generation by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Determination: Tracy and Moeller, 1990.

References:

Carlson, R. M. 1978. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide. Anal. Chem. 50:1528-1531.

DeBoer, G. J. and H. M. Reisenauer, 1973. DTPA as an Extractant of Available Soil Iron. 121-128. Comm. In Soil Sci. Plant Anal. 4 (2).

Franson, M.A.H. (ed.) 1985. Method 303A. 157-160. In: Standard Methods for the Examination of Water and Wastewater. 16th Edition. APHA, AWWA, WPCF; Washington, D.C.

Gee, G.W. and J.W. Bauder. 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci. Soc. Am. J., Madison, WI 43:1004-1007.

Janitzky, P. 1986. Cation exchange capacity. 21-23. In: Singer, M.J. and P. Janitzky (ed.) Field and Laboratory Procedures Used in a Soil Chromosequence Study. U.S. Geological Survey Bulletin 1648.

Johnson, C.M. and A. Ulrich. 1959. Analytical methods for use in plant analysis. Bulletin 766. Berkeley: University of California, Agricultural Experiment Station. 26-78.

Knudsen, D., G.A. Peterson and P.F. Pratt. 1982. Lithium, sodium, and potassium. 225-246. In: A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9 (Second Edition). ASA, Madison, WI.

Lanyon, L.E. and W.R. Heald. 1982. Magnesium, calcium, strontium, and barium. 247-262. In: A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9 (Second Edition). ASA, Madison, WI.

Lindsay, W.L. and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. Madison, WI. 42:421-428.

Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. 539-579. In: A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9 (Second Edition). ASA, Madison, WI.

Nelson, R.E. 1982. Carbonate and gypsum. 181-197. In: A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9 (Second Edition). ASA, Madison, WI.

Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept. Agr. Cir. 939: 1-19.

Rhoades, J.D. 1982. Soluble salts. 167-179. In: A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9 (Second Edition). ASA, Madison, WI.

Rible, J.M. and J. Quick. April, 1960. Water Soil Plant Tissue Tentative methods of analysis for diagnostic purposes. Method S-19:0. University of California Agricultural Experiment Service.

Sah, R.N. and R.O. Miller. 1992. Spontaneous reaction for acid dissolution of biological tissues in closed vessels. Anal. Chem. 64:230-233.

Soltanpour, P.N., J. Benton Jones, Jr., and S. M. Workman. 1982. Optical emission spectrometry. 29-65. In: A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph Number 9 (Second Edition). ASA, Madison, WI.

Sweeney, R.A. 1989. Generic combustion method for determination of crude protein in feeds: collaborative study. J. Assoc. Off. Anal. Chem. 72:770-774.

Tracy, M. L. and G. Moeller. 1990. Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part I. Selenium. J. Assoc. Off. Anal. Chem. 73:404-410.

U.S. Salinity Laboratory Staff. 1954. L.A. Richards (ed.) Diagnosis and Improvement of Saline and Alkali Soils. U.S. Department of Agriculture Handbook no. 60.