TURFGRASS RESEARCH CONFERENCE AND FIELD DAY

UNIVERSITY OF CALIFORNIA RIVERSIDE

This program is presented in honor of John Van Dam who is retiring from UC Cooperative Extension. We extend to him our deepest respect and thanks for a job well done.

SEPTEMBER 14, 1989

DEDICATION

This third annual Turfgrass Research Conference and Field Day is dedicated to John Van Dam whose skillful and untiring efforts to upgrade Southern California's turfgrass industry the past two decades has paid off so well for all of us associated with it. This month John formally retires from the University of California after having served 30 years as a Cooperative Extension county farm advisor in Los Angeles and San Bernardino counties. Throughout his career, John has led and set an example for his peers in providing needed research and educational programs to Southern California's turfgrass industry.

During his first years as a turfgrass advisor, he took over the planning and conduct of the annual Turf and Landscape Institute program and built it into one of the premier educational offerings of its kind in the United States. Several other such endeavors, including today's, owe much of their success to past examples set by John.

Concurrent with his exemplary educational programs, John has always worked with U.C. campus researchers, Cooperative Extension specialists and advisors, and industry leaders to ensure that the industry's changing research needs are met. His own field research projects have reflected these needs, ranging from variety selection and cultural practices to weed and insect control to water conservation.

John's expertise and dedication have served the University of California and Southern California's turfgrass industry well. His contributions are many and lasting. We wish John health and every happiness in the years ahead and extend to him our deepest respect and thanks for a job well done.

TABLE OF CONTENTS

AND CONFERENCE SCHEDULE

8:00	Registration	Page
8:45	Moderator-Announcements (Victor A. Gibeault)	
9:00	Play Locations on Football Fields	1
9:20	Thatch Accumulation in Tall Fescue Varieties	2
9:40	El Toro Zoysia Fertilization	3
10:00	Soil Aerification for Landscape Trees	4
10:20	BREAK	
11:00	Recent Developments in Nematode Identification and Control in Turfgrasses	5
11:20	Turfgrass Weed Control	6
11:40	Cool Season Turfgrass Mixes	7
12:00	Lunch - On Your Own	
12:45	Tram Rides to Turf Plots <u>or</u> Drive Your Own Vehicle	
1:30	Organization of Field Day	9
Stop #1	Zoysia Improvement	10
Stop #2	BermudaWinter Color	12
Stop #3	New Grasses	14
Stop #4	Sports Field Research	. 16
Stop #5	Perennial Rye/Variety Wear	22
Stop ∦6	CIMIS Implementation	24
Stop ∦7	Landscape Plant Material Evaluation	26

THE DEVELOPMENT OF THE UC RIVERSIDE TURF PLOTS IS LARGELY DUE TO THE GENEROSITY OF THE FIRMS AND ORGANIZATIONS SHOWN HERE.

PLAY LOCATIONS ON FOOTBALL FIELDS

S. T. Cockerham¹

In a study of fourteen professional and major college football bowl games, there was an average of 157.5 plays per game (Table 1). The location of each play on the field was recorded to the nearest 5 yard line. The highest yard-line average of 11.7 plays occurred at one 40-yard line and is the highest Zone of Traffic Concentration.

The Zone of Traffic Concentration (ZOTC) is defined as the area between the hash marks and from the backfoot of the offensive lineman in the three-point stance to the backfoot of the defensive lineman also in the three-point stance. The ZOTC is an area 180.4 sq. ft. (Table 2). Play locations are shown in graph form in Figure 1.

The assumptions made in drawing the conclusions are: 1) each play occurs on a 5-yard line, and 2) each play uses the full 18.5 feet between the hash-marks.

Superintendent, Ag. Operations, UC Riverside.

TALL FESCUE THATCH ACCUMULATION

Matthew K. Leonard¹

Some turfgrass species, such as bermudagrass, bluegrass, and bentgrass, are recognized as thatch-builders while others, notably tall fescue and perennial ryegrass, are perceived as having no thatch accumulation problem. It was surprising, therefore, to find a substantial thatch layer present in plugs taken from a mature sward of turftype tall fescue at the UC Riverside Turfgrass Research Facility.

This finding prompted a preliminary sampling of the Tall Fescue National Variety Trial, which was then three years old, in order to measure the thatch accumulation characteristics of the 38 varieties. Visual estimates of leaf texture (width) were made at the same time. That ranged from 16.3 to 29.0 mm in thickness. Statistically, the varieties broke down into two significantly different groups based on thatch thickness and four groups based on leaf texture. There was also a positive correlation between improved texture and increased thatch (see Leonard et al., Calif. Turfgrass Culture 37(3,4):9-10). Shearman et al. had previously reported a positive correlation between shoot dry matter and thatch accumulation (HortScience 21:1164, 1986). These results seemed to indicate that the greater biomass production of the turf-type and dwarf-type tall fescue varieties might be contributing to more thatch accumulation than was previously observed with this species.

To test this hypothesis, variety trials located in three distinct climate zones (UCR, inland valley; South Coast Field Station, coastal; and Helendale, high desert) are currently being evaluated. Since the three trials differ in content, a subsample of twenty common varieties was selected for testing. These varieties represent four generations of tall fescue breeding.

Results from the UCR and Helendale sites have so far revealed no differences between the varieties. Mean thatch thickness was 14.3 mm at UCR and 7.8 mm at Helendale. Both trials are approximately the same age (less than two years), so variation between locations was probably due to cultural intensity and/or climate. The South Coast location has not yet been sampled.

These results are considered to be preliminary and more samples will be made in the future. Until more is known, tall fescue turf should be monitored periodically for thatch accumulation.

¹ Staff Research Associate, Botany & Plant Sciences Dept., UC Riverside.

RESPONSE OF ZOYSIAGRASS TO NITROGEN FERTILIZATION FOR WINTER COLOR AND GENERAL PERFORMANCE

J. M. Henry¹

Zoysiagrass is considered to be a minimum maintenance turfgrass species. Use facilities often select zoysiagrass because of its low cost, minimum input characteristics, including its low fertility requirement. Because zoysiagrass is a warm season genus, its dormancy pattern is important in transitional zones such as southern California, even when considering use of a minimum maintenance turfgrass species. New zoysiagrass lines developed by the University of California were evaluated to determine their response to turfgrass nitrogen (N) fertilizer sources and application rates.

Study 1 looked at N response by fertilizer source during the warm growing months. The zoysias responded to (N) in a linear manner with slow release fertilizers requiring high application rates (4 lbs. actual N/1,000 ft.²) to effect acceptable turf color ratings. Osmocote at the high rate (4 lbs. actual N/1,000 ft.²) gave the most sustained color response.

Study 2 evaluated response to soluble N applied during the cool months to observe color enhancement. Nitrogen enhanced winter color in the mild coastal region of southern California, but also stimulated winter weed activity. An improved green color was obvious in all lines at 1 lb. actual N/1,000 ft.² rate if applied monthly. The lines of zoysia differed in their winter color characterization, however, with line #3 showing significantly higher color ratings in winter. Weed encroachment was directly related to line differences and N rates. Line #1 ('El Toro' zoysia) had the lowest percent weeds, with line #5 intermediate and line #3 had the lowest weed cover. The higher the N rate the greater the weed cover in general.

imes following treatment. Scale 1-9 with 9 deep grann. Color Rating*					9 darkest green.	
litrogent	Rasa		s Alter Treats		Line No. Color Score	· • •
	kg/ha	25	67	109	L J.O Z*	
					J 3.5 Y	
J	48.8	6.2 DB	1.0 FGH	4.0 EF		
	97.6	6.8 BC	6.0 D	4.8 BC	<u>5</u> 2.8 Z	
	195.2	7.5 A	6.8 BC	4.7 8CD		R ¥ /
A.S.	48.8	6.0 DEF	J.3 EP	4.3 CDE	— · · · · · · · · · · · ·	2
	97.6	6.8 BC	6.0 D	4.7 BCD	Table 3. Winter weed cover, by line, for	4 1/2LB 2/40
	195.2	7.7 A	7.2 8	4.7 BCD	January, 1984, given as percent cover.	-7- 118 1/Me
	48.8	6.2 DE	4.8 FGH	4.2 DEF		1 3 5 7 9 11 13 15 17 19 21 23 28 27
A.N.	97.6	6.8 BC	5.8 DB	4.5 CD8	Line No. Percent Weed Cover	Weeks After Treatments Began
	195.2	7.7 A	7.0 8	4.8 BC		Figure 1 - Color ratings of Zoysia lines tr
	193.4	1.1 A	7.0 0	4.4 00	1 19.4 X*	ingute t - color tarings of 20ysia filles cri
		5.2 HI	5.2 FG	4.3 CDB	3 43.4 Z	
.B.D.U	48.1 97.6	5.2 HI 5.3 GHI	6.3 CD	4.8 80	<u>5 28.9 Y</u>	
			8.3 CD	5.2 B	•	
	195.2	6.0 DEF	1.V A	J.2 D		f0
J.F.	48.8	5.3 GHI	4.5 HI	4.0 EF		
	97 6	S.S FOHL	4.8 FGH	4.3 CDB		50
	195.2	6.2 DB	6.2 D	4.7 BCD		
						10
t.C.	48.8	5.01	4.2 [4.2 DEF		
	97.6	1.5 FGHI	5.0 FGH	4.8 BC		• 30
	195.2	6.2 DB	6.5 BC	6.0 A		30 W
						•
M.U.	48.8	5.7 EFGH	4.7 GHI	4.2 DEF		20 Hitrogen Treatment
	97.6	6.2 DE	5.3 EP	4.5 CDB		4 Check 24.4 kg 1/mg
	195.2	7.2 AB	7.0 B	4.8 BC		
						- 24.4 kg 2/ms +4.6 kg 1/ms.
I.C.U.	48.8	5.8 DEFO	4.7 OHI	4.2 DEF		
	97.6	6.3 CD	6.0 D	4.5 CED		Jan Feb Mar Apr May J
	195.2	7.3 🗚 🗃	7.0 8	4.1 BC		1984

FOOTNOTES: * Values followed by the same letter are not significantly different at the 5% lavel of probability. † U=Urea, A.S.=Ammonium Sulphate, A.N.=Ammonium Nitrate, I.B.D.U.=Isobusylidene-diares, U.F.=Ureaformaldehyde, R.C.=Resin Cuat (Osmocote), M.U.=Methylene urea, S.C.U.=Sulphur-coated urea.

¹ County Dir. & Turf Advisor, Univ. of Calif., Coop. Ext., Orange Co.

SOIL AERIFICATION FOR LANDSCAPE TREES

Dennis R. Pittenger¹

Adequate soil oxygen is essential for growth and development of trees. In urban areas soil compaction commonly reduces soil air content to deficient levels for trees. This study was conducted to determine the relative effectiveness of four of the most widely used methods for aerifying and reducing compaction in soil around trees.

The study was conducted in a uniform block of 20 established Chinese Wingnut trees (<u>Pterocarya stenoptera</u>) that were serving as shade trees in a picnic area. The trees appeared to be relatively healthy, but the soil was a highly compacted sandy loam soil. In January of 1986, tree height, trunk circumference 6 inches from the soil, and annual growth from 4 lateral shoots in the upper one-third of the canopy were recorded. Soil penetrometer readings were also obtained during this period using a recording penetrometer. Readings were obtained to a depth of 2 feet or until a force of 2,000 psi was reached. Values greater than 1,500 psi were common at 12 inches and deeper.

All treatments were applied in March of 1986 and replicated 4 times. The treatments evaluated were: 1) two-inch diameter holes, in concentric circles, created with a power auger to a depth of 18 inches; 2) holes prepared as above and backfilled with a 50/50 mix of sand and milled fir bark; 3) holes prepared with a water jet as in treatment #1; 4) two holes, 4 inches in diameter by 18 inches deep, placed 180 degrees apart and approximately 5 feet from the trunk. Holes were lined with perforated PVC pipe and backfilled with gravel; and 5) untreated control.

Two years after the treatments were applied there were no significant differences in tree growth or soil compaction among the treatments. These results cast doubt on whether similar treatments applied to other species growing in other compacted soils would produce a benefit.

The fact that many tree care professionals have empirical evidence that supports the beneficial attributes of similar soil treatments should not be questioned. Rather, closer investigation should be given to the critical on-site conditions present in these cases, particularly the soil textural class and the actual extent of compaction as estimated by common parameters. In many instances, the treatments applied include a significant amount of soluble fertilizer which could account for much of the beneficial results experienced. It is also possible that a water jetting treatment is successful in providing water and nutrients but does nothing to alter the compaction level of the soil.

¹ Extension Urban Horticulturist, Botany & Plant Sciences Dept., UC Riverside.

RECENT DEVELOPMENTS' IN NEMATODE IDENTIFICATION AND CONTROL IN TURFGRASS

John D. Radewald, Fujio Shibuya, Becky B. Westerdahl¹

Recently, a root-knot nematode problem on warm season grasses was called to our attention. Upon identification of the nematode, we found we were dealing with a root-knot species that, to the best of our knowledge, has heretofore not been reported as a pest, or potential pest, of turfgrass.

Because of the implications of spread of this nematode during vegetative propagation, a series of trials were conducted on various methods of control. Dry heat as well as hot water dips were investigated. Chemicals were not considered to be a reasonable approach for controlling this pest on planting material. It was found that the nematode could successfully be controlled with the hot water dips and the grass would survive the treatment.

The implications of nematode dissemination and the problems encountered in control measures such as these will be discussed. Additionally, the heat requirements for control will be presented.

Preliminary distribution of the nematode has been investigated and more work in this area will be completed and reported upon at the time of the oral presentation.

¹ Extension Nematologist, Department of Nematology, UC Riverside; Staff Research Associate, Department of Nematology, UC Riverside; Extension Nematologist, Department of Nematology, UC Davis.

TURF WEED CONTROL

David W. Cudney

Turf weed control is a continual management "frame of mind." To achieve a successful turf weed management program the key is healthy, vigorous, turf. Weeds and turf compete for water, light, and nutrients.

A well managed healthy turf sward will generally win the battle with weeds because it is dense enough to limit weed invasion. It is only when there are holes in the sward due to disease, insects, injury or improper management that weeds can get started.

Some weeds take advantage of certain environmental conditions to gain a competitive edge. Legumes such as sour clover and bur clover have an advantage in poorly fertilized turf low in nitrogen. Spotted spurge may have an advantage in cool season turf swards that are mowed too closely favoring the shorter more prostrate spurge. Kikuyugrass may be favored in cool season swards that receive infrequent irrigation.

Even under good management conditions it is often impossible to maintain an optimum growing environment at all times and some weeds may gain entry into the system. Among the worst weeds to gain entry to turf are oxalis, spotted spurge, crabgrass, annual bluegrass, kikuyugrass and nutsedge.

The process of managing turf with one or more of these weed problems is a systematic process which begins with first altering the environment which leads to the invasion by the weedy species and then utilizing a management scheme which will lead to the most competitive turf. The use of other tools such as herbicides or renovation may also be in order. But once the weed is under control, it is the continual use of optimum turf management that is the key to a weed free turf.

¹ Extension Weed Scientist, Botany & Plant Sciences Dept., UC Riverside.

COOL SEASON TURFGRASS MIXES

Victor A. Gibeault

The cool season turfgrasses commonly used in California for general lawn purposes and certain specialty use facilities include tall fescue (<u>Festuca arundinacea</u>), Kentucky bluegrass (<u>Poa pratensis</u>) and perennial ryegrass (<u>Lolium perenne</u>). Field studies were conducted at the U.C. Riverside Turfgrass Research Project to examine the advantages/disadvantages of mixing tall fescue and Kentucky bluegrass and mixing Kentucky bluegrass and perennial ryegrass.

Tall fescue - Kentucky bluegrass

It was the objective of this study to evaluate the compatibility of three tall fescue varieties singly and each with the varieties of Kentucky bluegrass. The tall fescues were Alta, Mustang and Jaguar. The Kentucky bluegrasses were Kenblue, Columbia and A34. The test was established in 1985 and evaluated for turf quality, color, thatch, and presence of unwanted plant material at specific times. The test area was mowed at 1 1/2 inches, fertilized regularly and irrigated based on CIMIS.

Preliminary results indicate that the turf type tall fescues performed better than Alta tall fescue (quality and color); that they had more thatch accumulated over time; and that they mixed with the Kentucky bluegrasses well, irrespective of variety of bluegrass.

Kentucky bluegrass - perennial ryegrass

It was the objective of this study to evaluate the effects of mixing specifically selected varieties of Kentucky bluegrass with specifically selected varieties of perennial ryegrass. The Kentucky bluegrasses were America, Touchdown, Adelphi and Park; the perennial ryegrasses were Manhattan, Manhattan II, Prelude and Elka. The study was established in 1984 and maintained through 1984 at 1 1/2 inch height, with regular fertilization and irrigation based on CIMIS.

It was observed in preliminary results that Kentucky bluegrasses alone were of much poorer quality than ryegrasses alone or the mixes of the two grasses. There was considerable variation in performance among the varieties studied. There was not as great a difference of quality response with ryegrasses used alone or in mixes with Kentucky bluegrass. It was also found that there were weeds observed only in plots established to Kentucky bluegrass only. Perennial ryegrass alone, or perennial ryegrass mixed with Kentucky bluegrass had essentially no weed problem.

¹ Extension Environmental Horticulturist, Botany & Plant Sciences Dept., UC Riverside.

UCR TURF RESEARCH PLOTS

Proceedings of the UCR Turfgrass Research Conference and Field Day, September 1989

		ESEARCH CENTER -	PROJECT SUMMAI	RY
Starting Date Completion Da	May 12, 198	38	Plot No	o. <u>1</u>
Title: El Tor	o Zoysia Nitroge	en Source x Rate	Study	
Objective: <u>Ev</u> sources appl	aluate response ied at three rat	of 'El Toro' to ces.	eight different	t nitrogen
Investigator(s Name V. Gibea Name <u>M. Leona</u>		Dept. <u>C</u> Dept. <u>T</u>	<u>oop Ext</u> Phon <u>urf Lab</u> Phon	e <u>X 3575</u> e <u>X 3898</u>
Species/Cultiv	ars: <u>'El Toro'</u>	Zoysia		
Special				
No. of Reps <u>3</u>	Size of Rep	$\frac{/\chi}{RCB}$ $\frac{/}{x}$ $\frac{4'}{x}$ $\frac{4'}{x}$ $\frac{4'}{x}$ $\frac{4'}{x}$ $\frac{4'}{x}$ $\frac{4'}{x}$ $\frac{4'}{x}$	Total Plot 2	<u>0' x 60'</u>
Treatments: Eig	Size of Rep ght nitrogen sour) ft ² . : 1) Variable	• <u>4'</u> x <u>4'</u> rces (see below) Color	Total Plot 2	0'x_60' , 2.0, and weekly

'EL TORO' ZOYSIA NITROGEN SOURCE X RATE STUDY

		Rep	I			1	Rep I	I	Rep III							
22	5	3	8	2	13	20	5	24	22	2	22	15	23	4		
19	24	16	6	4	14	4	10	19	15	14	13	25	18	5		
23	10	17	25	18	8	9	2	18	17	1	11	7	21	6		
13	1	12	15	21	25	11	6	1	21	8	12	20	3	17		
7	11	9	20	14	16	3	12	7	23	24	16	19	9	10		
		Rep 1				I	Rep II			Rep III						
eatm	eatment No. Nit					Sourc	e		Anal	ysis		#N/1	000			
1 2 3	}			UREA	dry	(dry) 46-0						1 2 4	1 2 4			
4 5 6	}			Ammo	nium sulfate 21-					0-0	::*	1 2 4	1 2 4			
7 8 9	}			Ammo	nium nitrate 34-0					0-0			1 2 4			
10 11 12	}			IBDU		31-0					31-0-0			1 2 4		
13 14 15	}			UF (Powde	Powder Blue) 38-0					38-0-0			1 2 4		
16 17 18				Osmo	cote				34-0	34-0-7			1 2 4			
19 20 21				Meth	ylene	ylene urea 41-0					41-0-0			1 2 4		
					(30%)	30% DR) 37-0				-0-0 1 2 4						
25) Contr				rol				0-0-0	0		0					

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

Starting Date <u>October 1988</u> Completion Date	Plot No. 1
Title:'El Toro' Zoysia/Tall Fescue Mix Study	
Objective:	
Investigator(s): Name V. Gibeault Dept. Coop Ext Name M. Leonard Dept. Turf Lab	Phone <u>X 3575</u> Phone <u>X 3898</u>
Species/Cultivars: 'El Toro' Zoysia; 'Jaguar' (Turf- (Dwarf-type) Tall Fescue	type) and 'Monarch
Management: Mowing Frequency 1 x/Wk. Hei Fertilizer-Material Ammonium Nitrate Rate 1.0 Irrigation - // as needed 7 ET ₀ / X/Oth Special 60% ET in summer, 80% ET in winter	ght $\frac{1.5}{1000}$ fr $\frac{1.5}{1000}$ fr $\frac{1}{1000}$
Experimental Design: /X/ CRD // RCB // SPLT // No. of Reps 4 Size of Rep. 5' x 10' Total Treatments: (1) El Toro, (2) Jaguar TF, (3) Monarch overseeded into El Toro, (5) Monarch overseeded into	TF, (4) Jaguar
Data Collection: 1) Variable <u>Percent cover</u> Frequent 2) Variable <u>Turf Score</u> Frequent 3) Variable <u>Uniformity</u> Frequent	cyMonthly
Special Instructions/Comments: El Toro was vertical overseeding. Tall fescue seeding rate was 15 1b/1000 ft ² .	mowed prior to

.

OVERSEEDING OF 'EL TORO' ZOYSIAGRASS WITH TALL FESCUE

N

.

.

,

TREATMENTS

- 1) El Toro Zoysia
- 2) Turf-type Tall Fescue
- 3) Dwarf-type Tall Fescue
- 4) Turf-type TF Overseeded on Zoysia
- 5) Dwarf-type TF Overseeded on Zoysia

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

Starting Date <u>Jun</u> Completion Date <u>19</u>			Plot	No	5
Title: <u>Zoysia cul</u>	tivar evaluati	ion		. <u> </u>	
Objective: <u>Examine</u> available and expe	turf quality rimental culti	and grou Lvars of	wth character zoysiagrass.	istics o	f commercially
Investigator(s): Name V. Gibeault Name <u>M. Leonard</u>		Dept. Dept.	Coop Ext Turf Lab	Phone Phone	
Species/Cultivars: 	<u>Zovsia</u> japor trella and Z.	nica and tenuifo	intraspecifi Iia.	c hybrid	s of
Management: Mowing Fertilizer-Material Irrigation - // as Special Experimental Design: No. of Reps 3 S: Treatments: <u>Cultiv</u> mental UC cultivar	ammonium nitr needed // CRD /X/ ize of Rep.	<u>60</u> % E	Rate 1.0 T ₀ //Othe / SPLT // 10' Total 1	<u>1b N (10</u> er (Spec: Other 21ot 60	00 ft2/month) ify Below)
		e Below	Frequenc	-	
Special Instructions/ establishment, win tion, mowability, over a period of s Plots were establi	ter color reto seedhead produ everal years.	ention, uction,	color, and ge	neral tu	rf quality,

UCR ZOYSIA VARIETY EVALUATION

	11	5	16	15	13	9			
									2
Rep I	14	17	4	1	3	18	Rep		1
1							I		2
									3
	12	8	2	7	10	6		4	
									5
ь. Г	15	3	9	16	17	4			6
									7
									8
Rep II	6	1	12	14	10	7	Rep II		9
	5								10
		8	11	13	18	2			11
								12	
									13
	14	12	11	1	13	15			14
					-			(4).	15
	-					10	1		
Rep III	7	2	9	8	6	18	Rep III		16
									17
	10	5	4	17	16	3			18
				-			1		

Zoya	sia Selectior
1)	El Toro
2)	Meyer ·
3)	Emerald
4)	Belair
5)	UCR-288-1
6)	UCR-288-2
7)	UCR-288-3
8)	UCR-288-4
9)	UCR-288-5
10)	UCR-288-6
11)	UCR-288-7
12)	UCR-288-8
13)	UCR-288-9
14)	UCR-288-10
15)	UCR-288-11
16)	UCR-288-12
17)	UCR-288-13
18)	UCR-288-14

Proceedings of the UCR Turfgrass Research Conference and Field Day, September 1989

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY
Starting DateMay 86Project No.Completion DatePlot No.
Title:National Bermudagrass Trial
Objective: <u>To evaluate Bermudagrass in southern California</u> .
Investigator(s): Name V. A. Gibeault Dept. Coop. Ext. Phone X3575 Name R. Autio Dept. Coop. Ext. Phone X4430
Species/Cultivars:32 Bermudagrass cultivars
Management: Mowing Frequency 1 x/Wk. Height 3/4" Fertilizer-Material Rate 1# N/M/6 wk. Irrigation - 1x / as needed% ET0 //Other (Specify Belle) Special
Experimental Design: // CRD /X/ RCB // SPLT // Other No. of Reps 3 Size of Rep. x Total Plot x Treatments:
Data Collection: 1) Variable Turfscore Frequency Monthly 2) Variable Frequency Frequency 3) Variable Frequency Frequency
Special Instructions/Comments:

NATIONAL BERMUDAGRASS TEST, 1986

Entries and Sponsors

Entry No.	Name	Sponsor
1	CT-23	Cal-Turf, IncCamarillo, CA
2	NM 43	A. Baltensperger - New Mexico State University
3	NM 72	A. Baltensperger
4	NM 375	A. Baltensperger
5	NM 471	A. Baltensperger
6	NM 507	A. Baltensperger
7	Vamont	L. Taylor - Va. Tech
8	E-29	Kansas State University
9	A-29	Kansas State University
10	RS-1	H. Rice, A.J. Powell-
		University of Kentucky
11	MSB-10	J. Krans - Miss. St. Univ.
12	MSB-20	J. Krans
13	MSB-30	J. Krans
14	A-22	Kansas State University
15	Texturf 10	Texas A & M University
16	Midiron	-
17	Tufcote	-
18	Tifgreen	-
19	Tifway	-
20	Tifway II	-
21	NMS 1 (NuMex-Sahara)	A. Baltensperger & Farmers Marketing Corp.
22	NMS 2	A. Baltensperger
23	NMS 3	A. Baltensperger
24	NMS 4	A. Baltensperger
25	NMS 5	A. Baltensperger
26	Arizona Common	-
27	Guymon	Agriculture Processors -
	-	Enid, OK
28	FB-119	A. E. Dudeck -
		University of Florida
		-

NOTE: Entries 21-27 are seeded bermudagrasses.

17

LOCATIONS SUBMITTING DATA FOR 1988

Location <u>Code</u> State Fayetteville AR1 Arkansas Santa Ana California CA2 California Riverside CA3 Gainesville FL1 Florida KS1 Manhattan Kansas Kansas Wichita KS2 Baton Rouge (high mowing) LA1 Louisiana Baton Rouge (low mowing) LA2 Louisiana Beltsville UB1 Maryland Silver Spring MD1 Maryland Mississippi State (full sun) MS1 Mississippi Mississippi Mississippi State (dense shade) MS2 Las Cruces (high mowing) NM1 New Mexico Las Cruces (low mowing) NM2 New Mexico Stillwater OK1 Oklahoma TX1 Cleveland Texas VA1 Blacksburg Virginia VA2 Blackstone Virginia

NATIONAL BERMUDAGRASS TRIAL, UCR Planted May 29, 1986

Block 17

Plot Size 10' x 10'

								Entry	
	32	31	30	24	3	10		Number	Name
+								1	CT-23
	25	7	6	26	15	21		2	NM 43
								3	NM 72
	1	29	12	5	11	16		4	NM 375
I			-					5	NM 471
	2	19	9	28	13	8		6 7	NM 507
									Vamont
	4	20	27	18	14	17		8	E-29
			+	+		+	-	9	A-29
	22	23	7	3	16	13		10	RS-1
	+	+						11	MSB-10
	23	2	12	5	29	11		12	MSB-20
								13	MSB-30
	25	24	9	.19	15	27		14	A-22
	-						25	15	Texturf 10
II	21	14	17	28	8	22		16	Midiron
	-	I				l		17	Tufcote
	(Commo	on Ber	rmudag	grass	18	Tifgreen		
					-			19	Tifway
	1		31	32	18	6		20	Tifway II
							-	21	NMS 1
	20	30	26	1	8	2	R.	22	NMS 2
	+							23	NMS 3
	30	22	9	27	11	7		24	
								25	NMS 14
	26	6	18	25	5	1		26	Arizona Common
								27	Guymon
III	12	16	19	14	29	13		28	FB-119
			_					29	C19
	17	15	21	28	24	23		30	C84
	-							31	Tifgreen II
	32	31						32	Santa Ana
				-					

Objective:

To evaluate Bermudagrass varieties in southern California.

Methods and Materials:

In May, 1986, 1" plugs were placed on 1" centers in 10' x 10' plots. The plots are mowed at 3/4", fertilized at 1# N/M every 6 weeks and irrigated as needed.

MEAN TURFGRASS QUALITY RATINGS OF BERMUDAGRASS CULTIVARS AT EIGHTEEN LOCATIONS IN THE UNITED STATES 1988 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF 1/

	NAHE	AR1	CA2	CA3	FL1	KS1	KS2	LA1	LAZ	HD1	MS1	MS2	NH1	NH2	0K1	TX1	UB1	VA1	VA2	NEAN
	MSB-20	7.8	5.5	6.0	5.4	6.9	8.1	7.8	8.5	7.7	7.4	5.2	4.9	8.0	6.4	8.7	7.5	7.7	6.8	7.0
	MSB-10	8.3	6.7	5.7	6.1	6.1	8.3	7.8	7.8	6.4	6.9	4.3	6.6	7.7	6.7	8.0	7.1	7.7	7.3	7.0
*	TIFWAY II	7.9	6.4	5.8	6.1	5.8	8.3	7.9	7.8	6.4	7.0	3.9	6.8	7.7	6.3	8.0	6.9	7.4	7.1	6.9
*	TIFWAY	7.8	6.1	5.5	6.3	5.6	8.2	7.9	7.8	6.3	6.8	3.9	6.0	8.0	6.8	1.1	6.9	7.6	7.4	6.8
*	TIFGREEN	7.3	5.4	5.8	5.2	7.1	7.7	7.7	8.3	6.2	7.1	4.7	4.6	7.0	6.7	9.0	7.8	7.2	7.0	6.8
	NM 43	7.2	5.4	6.1	5.6	6.2	7.7	8.2	8.5	6.6	7.3	4.3	5.1	7.7	6.4	6.7	7.9	7.2	7.1	6.7
	MSB-30	7.5	6.5	5.8	5.6	6.9	7.2	7.3	7.5	6.0	6.3	4.4	6.3	7.0	7.9	8.0	6.9	6.9	6.4	6.7
*	TUFCOTE	7.3	5.5	5.9	5.8	7.1	8.0	7.5	7.7	5.8	5.6	3.7	5.3	6.7	6.4	5.7	7.5	6.7	6.6	6.4
	E-29	7.0	6.1	6.5	5.3	7.0	8.7	6.7	6.8	6.4	5.4	1.5	7.3	8.0	6.3	5.3	6.7	6.9	6.4	6.3
	A-22	6.9	5.7	6.4	5.5	7.2	8.6	7.2	7.1	6.4	5.7	2.2	6.2	6.0	6.8	6.3	6.9	6.4	6.7	6.3
*	TEXTURF 10	7.8	5.8	5.5	5.3	6.7	7.6	6.8	7.2	5.3	5.5	3.1	6.7	1.1	6.8	5.7	6.3	7.0	6.6	6.3
	A-29	6.9	5.6	5.9	5.3	7.3	8.1	7.0	7.0	6.2	5.4	2.7	5.3	6.7	6.6	6.0	6.8	7.0	6.6	6.2
	CT-23	6.8	5.3	5.5	5.5	5.3	7.3	7.4	7.0	6.6	6.2	2.4	5.4	8.0	5.8	6.3	5.5	6.8	6.2	6.1
	NM 471	7.2	6.0	5.4	6.2	4.1	6.1	7.5	7.8	4.9	5.2	4.4	6.3	6.0	6.7	7.0	4.9	6.2	6.6	6.0
	NM 375	7.0	5.4	5.6	6.4	5.1	7.7	7.0	7.4	4.7	5.1	2.9	6.2	6.3	6.3	6.7	6.3	5.3	6.7	6.0
	NM 507	7.2	6.1	5.0	6.2	3.7	6.3	7.5	8.0	4.1	5.2	3.4	6.4	5.7	6.8	7.0	4.5	5.0	6.9	5.8
×	MIDIRON	6.2	5.9	6.0	5.6	6.9	8.0	6.7	6.7	5.4	5.0	1.7	5.0	5.0	6.2	5.3	6.3	6.4	6.6	5.8
	RS-1	6.1	5.3	5.8	4.9	7.4	6.7	6.2	6.6	6.6	4.8	2.6	4.7	6.0	6.3	6.3	5.7	6.4	6.1	5.8
	F8-119	7.1	5.0	5.0	5.9	4.8	6.1	7.1	6.8	6.4	4.9	3.7	5.2	5.0	6.1	6.3	4.6	6.2	6.7	5.7
*	VAMONT	5.8	5.1	5.9	4.9	6.7	6.1	6.2	6.1	6.2	4.3	3.1	4.1	4.7	6.8	6.3	5.9	5.9	6.4	5.6
	NM 72	6.4	5.0	5.0	5.5	4.1	5.1	6.9	6.7	5.8	4.9	3.6	4.6	6.0	5.9	6.0	4.5	5.6	6.9	5.5
	NMS 3	6.4	5.2	4.7	5.3	4.3	5.0	6.8	7.0	5.9	4.9	2.5	5.1	5.0	5.9	6.0	4.5	6.2	6.3	5.4
	NMS 4	6.4	5.1	4.7	5.3	4.9	5.3	6.6	6.8	5.6	4.1	2.2	5.6	3.7	5.9	5.3	4.9	6.0	6.4	5.3
*	NHS 1 (NUMEX-SAHARA)	5.7	4.9	4.9	5.3	5.0	6.1	5.9	5.8	5.3	3.9	2.1	5.0	4.7	6.3	4.3	4.9	5.7	5.9	5.1
	NMS 2	5.5	4.9	5.1	5.0	4.9	5.4	6.2	6.3	6.4	3.9	2.4	4.4	4.7	5.8	5.0	4.1	5.2	6.0	5.1
	NHS 14	5.9	5.0	5.1	5.2	5.1	6.6	5.7	6.0	5.8	3.9	2.2	3.6	3.3	5.8	4.3	3.6	5.3	5.7	4.9
*	AZ. COMMON	5.5	4.8	5.0	5.0	4.6	6.1	5.6	5.3	5.0	3.8	2.0	3.2	2.7	5.7	4.0	3.8	4.9	5.0	4.6
*	GUYMON	5.0	4.5	5.0	5.1	5.7	6.1	5.2	5.2	4.4	3.2	1.3	4.6	1.7	5.8	3.0	4.7	4.6	5.4	4.5
	LSD VALUE	0.6	0.5	0.5	0.4	0.6	0.9	0.7	0.5	1.4	0.3	0.7	1.0	1.9	0.7	0.9	0.8	1.0	0.6	0.2

* COMMERCIALLY AVAILABLE VARIETY

1/ TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

21 .

.

TABLE 1A.

Proceedings of the UCR Turfgrass Research Conference and Field Day, September 1989

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

Starting Date <u>July 1</u> Completion Date	<u>989</u>	Project No Plot No	
Title: <u>Buffalograss</u>	Variety Evaluation		
Objective: To observe	buffalograss performa	ance in southern	California
Investigator(s): Name V. A. Gibeault Name R. Autio	Dept. Coo Dept. Coo	op. Ext. Phone	787-4430
Species/Cultivars: 91	Buffalograss cultivar	cs	
Management: Mowing Frequ Fertilizer-Material Irrigation - <u>/x</u> / as need Special		Height Rate /_/Other (Spe	in. cify Below)
Experimental Design: // No. of Reps Size of Treatments:	f Rep x	PLT // Other Total Plot	x
Data Collection: 1) Varia 2) Varia 3) Varia	able	Frequency Frequency Frequency	
Special Instructions/Comme	ents:	· · · · · · · · · · · · · · · · · · ·	
<u> </u>			

UCR BUFFALOGRASS VARIETY EVALUATION

TT

23

N |

						III	
	I			II	6	3	5
9	2	1	1	8	3	1	8
8	5	4	2	4	5	9	2
3	6	7	9	7	6	4	7

Name	
Highlight	17
Highlight	24
84-304	
84-315	
84-409	
84-609	
85-378	
Texoka	
BD 8900	
	Highlight Highlight 84-304 84-315 84-409 84-609 85-378 Texoka

Objective: To evaluate buffalograss for turfgrass performance characteristics under southern California conditions.

Proceedings of the UCR Turfgrass Research Conference and Field Day, September 1989

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

Starting Date Completion Date	July_1989	Project N Plot N	No
Title: <u>Zoysia</u>	Variety Evaluation	L	
Objective: <u>To</u>	evaluate zoysia cu	ltivars in southern	California.
Name <u>R. Autio</u>		Dept. <u>Coop. Ext.</u> Dept. <u>Coop. Ext.</u>	Phone 787-4430
Species/Cultivars	s: <u>15 Zoysia cu</u>	ltivars	
Fertilizer-Materi Irrigation - $/x$,	ing Frequency Lal / as needed	x/Wk. Hei Rate%ET _O /Oth	ght in. er (Specify Below)
No. of Reps 3	ign: // CRD /x/ Size of Rep	RCB // SPLT //	Other X
Data Collection:	l) Variable 2) Variable 3) Variable	Frequen Frequen Frequen	
Special Instructi	.ons/Comments:		
• • • • • • • • • • • • • • • • • • •			

UCR ZOYSIA	STUDY
------------	-------

							III	
	8	13	14	3	11	5	9	1
I	10	5	15	2	4	7	6	12
	1	9	6	12	7	8	3	13
	5	1	11	14	12	10	14	15
II	15	9	8	10	7	11	2	4
	2	13	3	4	6			

Entry #	Name
1.	El Toro
2.	Emerald
3.	Belair
4.	Meyer
5.	DALZ8501
6.	DA1Z8502
7.	DALZ8507
8.	DALZ8512
9.	DALZ8514
10.	DALZ8701
11.	UCR-Z88-1
12	UCR-Z88-5
13.	UCR-Z88-8
14.	UCR-Z88-9
15.	UCR-288-14

Ν

Objective: To evaluate available and experimental zoysiagrasses for turfgrass quality characteristics and winter color retention.

Proceedinas	of the UCR T	urfarass R	esearch C	onference an	d Field Dav.	September 1	989

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

 Starting Date
 July 1989
 Project No.

 Completion Date
 Plot No.
 Title: <u>New Bermudagrass Lines</u> Objective: <u>To observe the performance of new bermudagrass</u> cultivars in southern California. Investigator(s): NameV. A. GibeaultDept.Coop. Ext.Phone787-3575NameR. AutioDept.Coop. Ext.Phone787-4430 Species/Cultivars: 56 Bermudagrass cultivars Management: Mowing Frequency _____ x/Wk. Height _____ in.
 Fertilizer-Material
 Rate

 Irrigation - /x/ as needed
 % ETo //Other (Specify Below)
Special _____ Experimental Design: // CRD // RCB // SPLT /x/ Other observation No. of Reps 1 Size of Rep. x Total Plot x Treatments:

 Data Collection:
 1) Variable
 Frequency

 2) Variable
 Frequency

 3) Variable
 Frequency

Special Instructions/Comments:

N

-

UCR BERMUDAGRASS LINES

			r		·····		r	,
1	2	3	4	5	6	7	8	Entry Entry # Name # Name
9	10	11	12	13	14	15	16	# Name # Name 1. OK-88-1 29. OK-88-29 2. OK-88-2 30. OK-88-30 3. OK-88-3 31. OK-88-31 4. OK-88-4 32. OK-88-32 5. OK-88-5 33. OK-88-33
17	18	19	20	21	22	23	24	5. 0K-88-5 33. 0K-88-33 6. 0K-88-6 34. 0K-88-34 7. 0K-88-7 35. 0K-88-35 8. 0K-88-8 36. 0K-88-35 9. 0K-88-9 37. 0K-88-37 10. 0K-88-10 38. 0K-88-38 11. 0K-88-11 39. 0K-88-39
25	26	27	28	29	30	31	32	11. OK-88-11 39. OK-88-39 12. OK-88-12 40. OK-88-40 13. OK-88-13 41. OK-88-41 14. OK-88-14 42. OK-88-42 15. OK-88-15 43. OK-88-43 16. OK-88-16 44. CD8901 17. OK-88-17 45. Bakersfield
33	34	35	36	37	38	39	40	18. OK-88-18 46. CD14 19. OK-88-19 47. CD23 20. OK-88-20 48. CD27 21. OK-88-21 49. CD508 22. OK-88-22 50. CD32
41	42	43	44	45	46	47	48	23. OK-88-23 51. CD667 24. OK-88-24 52. Ariz. Cmn. 25. OK-88-25 53. CD667 26. OK-88-26 54. NK-1 27. OK-88-27 55. Blueridge 28. OK-88-28 56. CT-2
49	50	51	52	53	54	55	56	

Objective: To evaluate bermudagrass for turfgrass quality characteristics and winter color retention.

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

on on nnial
906
a Ana'
in. Below)
<u>50'</u>): <u>t²/mon</u> t
<u>udy</u>

TRAFFIC X NUTRITION STUDY

Perennial Rye/ 'Santa Ana' Bluegrass Kentucky Bluegrass Т 4 2 3 1 - 2 4 1 3 \mathbf{NT} \mathbf{NT} 2 1 3 4 - 1 2 4 3 т \mathbf{NT} 3 2 1 4 - 3 2 4 1 -Т Т 2 4 3 1 - 2 -- 1 3 4 \mathbf{NT}

TREATMENTS

- 1) Check

- 1) Check 2) 1.0 1b N/1000 ft²/month (Urea) 3) 1.0 1b K₂0/1000 ft²/month (KC1) 4) 1.0 1b N + 1.0 1b K₂0/1000 ft²/month

T = Traffic NT = No Traffic

Ň

Proceedings of the UCR	Turfgrass Research	Conference and Fie	ld Day, September 1989
------------------------	---------------------------	---------------------------	------------------------

UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

Starting Date <u>17 Oct 84</u> Completion Date	Project No. Plot No. 3
Title: National Perennial Ryeg	rass Variety Trial
Objective: <u>To evaluate the sui</u> southern California.	tability of perennial ryegrasses in
Investigator(s): Name V.A. Gibeault Name R. Autio	Dept. Coop Ext Phone X 3575 Dept. Coop Ext Phone X 4430
Species/Cultivars: 55 perennial	rye cultivars
Management: Mowing Frequency Fertilizer-Material Irrigation - /X/ as needed Special	<u>1</u> x/Wk. Height <u>1-1/2</u> in. Rate <u>1</u> # N/M/6 wk. <u>% ET₀ //Other (Specify Below)</u>
Experimental Design: /_/ CRD /X No. of Reps 3 Size of Rep Treatments:	7 RCB / 7 SPLT / 7 Other 45 x 30 Total Plot 45 x 90
Data Collection: 1) Variable 2) Variable 3) Variable	urfscores Frequency Monthly Frequency Frequency Frequency
Special Instructions/Comments:	Seeding rate 5.3 #/M

NATIONAL PERENNIAL RYEGRASS TEST, 1982

Entries and Sponsors

Entry No.	Name	Sponsor
1	Palmer	Loft's Seed Co.
2	Diplomat	Loft's Seed Co.
3	Prelude	Loft's Seed Co.
4	Barry	Loft's Seed Co.
5	Yorktown II	Loft's Seed Co.
6	Mom Lp 736 (Ovation)	O. M. Scott & Sons
7	Mom Lp 702	Van der have - Oregon
8	Crown	E. F. Burlingham & Sons
9	Mom Lp 210	Van der have - Oregon
10	Acclaim	R. M. Cook & Co.
11	HE 178	Van der have - Oregon
12	HE 168	Van der have - Oregon
13	Ranger	Van der have - Oregon
14	Blazer	Pickseed West, Inc.
15	Fiesta	Pickseed West, Inc.
16	Dasher	Pickseed West, Inc.
17	Mom Lp 792	Willamette Seed & Grain
18	WWE 19	E. F. Burlingham & Sons
19	Cockade	Tib Szego Assoc.
20	Cigil	Tib Szego Assoc.
21 22 23 24 25 26 27 28 29 30	2EE (Cowboy) Manhattan Manhattan 11 282 (Citation 11) Citation Omega 2ED (Birdie 11) NK 80389 NK 70939 Pennant	Turf-Seed & Loft's Seed Turf-Seed & Whitney Dicki Turf-Seed, Inc. Turf-Seed, Inc. Turf-Seed & Garfield Will Turf-Seed, Inc. Northrup King Co. Northrup King Co. Ag. Service Corp.
31	Premier	Ag. Service Corp.
32	SWRC-1	Reed Funk - Rutgers
33	M-382	Reed Funk - Rutgers
34	HR-1	Reed Funk - Rutgers
35	Linn	-
36	Pennfine	-
37	Delray	Northrup King Co.
38	NK 79307	Northrup King Co.
39	Cupido	Landis Seed West
40	Regal	International Seeds
4 1	Derby	International Seeds
4 2	IA 728 (All*Star)	Inter. Seeds & J. & L. Ad
4 3	Elka	International Seeds
4 4	Gator	International Seeds
4 5	BT-I (Tara)	Hubbard Seed & Supply
4 6	GT-II (Repell)	Loft's Seed Co.
4 7	Pippin	Production Service, Inc.

LOCATIONS SUBMITTING DATA FOR 1986

State	Location	1	Code
British Columbia	Agassiz	I	BCI
California	Riverside	ſ	CA3
Illinois	Urbana		IL1
lowa	Ames	,	1 A 1
Kentucky	Lexington	ł	KY I
Maryland	Beltsville	ι	UB1
Maryland	Silver Spring	1	MDI
Massachusetts	Amherst	٢	4A 1
Missouri	Columbia	٢	101
Nebraska	Lincoln	N	NE 1
New Jersey	Adelphia	N	J2
New York	lthaca	N	1Y 1
North Carolina	Raleigh	N	101
Oregon	Hubbard	. 0	R1
Rhode Island	Kingston	R	11
Virginia	Blacksburg	v	(A 1
Washington	Puyallup	W	IA3

UCR PERENNIAL RYEGRASS VARIETY TRIAL

Block #3

		17	36	20	5	21	45	16	29	48
]	22	53	25	28	6	35	14	54	37
		13	7	11	42	12	9	4	40	24
		15	2	55	23	31	1	26	34	50
	1	33	30	27	52	32	43	51	44	38
]	8	39	47	19	3	10	41	18	49
Ţ		23	10	32	6	34	9	8	35	48
1		25	51	53	52	29	13	15	18	12
-1		3	21	20	37	11	40	27	17	47
- 		31	. 7	30	50	4	1	28	43	55
	1	45	5	22	36	14	49	19	54	2
		26	44	16	24	33	42	39	38	41
-+-		32	50	4	42	21	38	13	8	47
		36	37	6	18	54	45	1	29	49
т	III	25	23	15	41	19	11	16	39	9
-		55	31	48	22	34	27	20	26	52
		5	12	7	3	35	43	2	33	14
	5'	10	44	17	40	28	53	51	30	24

Objectives:

To evaluate their suitability for turf use in southern California.

Methods and Materials:

On 17 October 1984, 53 cultivars of perennial ryegrass and one of intermediate ryegrass were seeded to 5' x 5' plots at a rate of 5.3 #/M.

The plots are mowed at 1-1/2", fertilized at 1# N/M every 6 weeks, and irrigated as needed.

No. Name Palmer 1 2 Diplomat 3 Prelude 4 Barry 5 Yorktown II 6 Ovation LP 702 7 Crown 8 9 LP 210 Acclaim 10 11 HE178 12 HE168 13 Ranger 14 Blazer 15 Fiesta 16 Dasher LP 792 17 18 WWE 19 19 Cockade 20 Cigil 2EE 21 22 Manhattan 23 Manhattan II 24 282 25 Citation 26 Omega 27 Birdie II 28 NK 80389 29 NK 79309 30 Pennant Premier 31 SWRC-1 32 M382 33 34 HR-1 35 Linn 36 Pennfine 37 Delray 38 NK 79307 39 Cupido Rega1 40 41 Derby 42 IA 728 43 Elka 44 Gator 45 BT-I 46 47 Pippin 48 Repell P2 49

Entry

Ν

50

Servo

TABLE 1. MEAN TURFGRASS QUALITY RATINGS OF PERENNIAL RYEGRASS CULTIVARS AT SEVENTEEN LOCATIONS IN THE U.S. 1986 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF 1/

NAME	BC 1	CA3	IA1	IL1	KY 1	MA 1	MD t	MO 1	NC 1	NE 1	NJ2	NY 1	OR 1	RI1	UB 1	VA 1	WA3	MEAN
* PALMER	5.7	7.2	7.7	6.7	6.5	5.6	5.8	7.1	7.0	6.1	6.8	4.8	6.7	5.6	7.1	5.1	6.8	6.4
SWRC-1	5.6	6.7	7.9	6.8	6.6	5.7	5.3	7.1	7.7	6.7	6.3	4.1	6.6	5.2	6.6	5.0	6.2	6.2
M-382	5.5	6.8	6.9	6.3	6.9	5.5	4.9	6.6	6.7	7.1	6.5	5.1	7.1	5.6	6.2	4.4	6.6	6.2
* 282 (CITATION II)	5.5	6.9	7.7	6.0	6.6	5.6	5.6	6.7	7.3	5.1	6.8	4.4	7.3	5.8	6,3	5.1	5.7	6.1
* MANHATTAN II	5.9	6.6	7.5	6.2	6.0	5.7	5.1	6.7	6.7	6.9	6.4	4.6	7.3	5.8	6.1	4.4	6.7	6.1
* GATOR	6.3	6.8	7.0	7.0	7.0	5.6	5.0	7.1	6.5	6.7	6.5	4.1	6.6	5.6	5.7	4.9	5.7	6.1
* BLAZER	5.8	6.8	7.5	6.3	6.8	5.7	5.1	7.2	6.3	6.4	6.9	4.4	6.6	5.4	6.8	4.5	5.7	6.1
* PRELUDE	5.6	6.8	7.0	7.0	6.5	5.6	5.4	7.0	6.8	5.9	6.4	3.9	6.6	5.6	6.4	5.3	6.0	6.1
* GT-II (REPELL)	5.8		7.5	6.7	6.9	5.6	5.6	6.9	4.2	5.7	6.7			5.9	6.8	4.9	6.3	6.1
* BT-I (TARA)	5.7	7.0	7.3	6.5	6.9	5.5	4.9	6.7	5.5	6.4	6.4	3.8	6.7	5.7	5.8	5.0		6.0
* IA 728 (ALL*STAR)	5.3	6.2	6.9	6.7	6.4	5.5	5.8	6.7	7.0	5.9	5.7	5.2	6.2	5.5	6.8	5.0	5.1	6.0
HR-1	5.6	7.1	6.8	6.3	6.3	5.6	5.4	7.0	6.5	5.9	6.1	4.4	6.6	5.3	6.3	4.8	5.8	6.0
* PENNANT	5.9	6.4	7.4	6.8	6.7	5.6	5.8	6.7	7.5	5.2	5.6	4.5	5.9	5.3	6.2	5.0	4.9	6.0
* RANGER	5.6	6.4	7.5	6.8	6.3	5.8	5.1	7.0	6.0	6.0	6.4	4.2	6.3	5.4	6.1	4.6	5.4	5.9
* PREMIER	5.6	6.3	6.9	6.7	6.5	5.5	5.2	7.0	6.3	6.2	5.9	4.3	6.5	5.3	6.5	4.7	5.3	5.9
MOM LP 702	5.8	6.6	8.0	6.7	6.4	5.4	5.8	6.8	5.3	5.8	5.9	4.8	6.0	5.9	5.2	4.7	4.9	5.9
* DERBY	5.9	6.3	6.4	6.2	6.4	5.5	6.1	6.9	6.0	6.0	6.1	4.8	6.3	4.9	5.7	4.6	5.2	5.8
HE 178	6.0	6.2	7.0	6.3	6.1	5.3	4.8	6.5	7.0	5.1	4.9	5.5	6.2	5.5	6.6	4.8	5.2	5.8
* PENNFINE	5.8	5.6	6.6	6.7	6.3	5.8	5.7	6.2	6.7	5.7	5.3	4.3	5.8	5.6	6.4	4.8	5.4	5.8
* YORKTOWN II	5.6	6.4	7.0	7.0	6.3	5.6	5.3	6.9	5.0	6.0	5.8	4.2	6.4	4.8	5.7	4.7	5.9	5.8
* FIESTA	5.6	6.2	7.0	6.5	6.5	5.6	4.8	7.1	5.5	5.9	5.7	4.5	5.8	5.7	6.2	4.6	5.6	5.8
HE 168	6.2	6.3	7.8	6.5	5.9	5.3	4.9	6.0	6.8	5.9	5.2	4.8	5.9	5.2	6.4	4.5	4.3	5.8
* 2ED (BIRDIE II)	5.3	6.6	6.0	6.0	6.5	5.4	4.9	6.1	6.5	5.8	5.5	4.4	7.0	5.4	6.1	4.7	5.4	5.8
* DASHER	5.4	6.3	6.3	6.2	6.3	5.6	5.7	6.3	6.8	6.3	5.2	4.2	5.6	5.7	6.2	4.3	4.8	5.7
* MOM LP 736 (OVATION)	5.8	6.3	6.5	6.5	6.5	5.7	5.4	6.3	6.2	5.1	4.7	4.6	6.0	5.1	6.2	4.8	5.4	5.7
ACCLAIM	5.3	6.4	6.7	6.3	5.8	5.5	4.3	6.3	7.5	5.7	5.2	4.7	5.8	5.5	6.1	4.7	5.1	5.7
* CROWN	5.6	6.1	6.6	6.8	6.3	5.5	4.9	6.3	5.2	5.9	5.2	5.0	5.5	6.0	6.2	4.5	5.1	5.7
* DIPLOMAT	5.1	6.2	7.2	7.0	6.1	5.6	4.7	6.5	5.8	5.6	5.4	4.2	5.9	4.9	5.6	4.5	6.0	5.7
* 2EE (COWBOY)	5.3	6.1	6.4	6.2	5.6	5.5	4.3	6.1	6.2	5.7	5.1	4.3	6.5	5.9	6.1	4.7	5.3	5.6
* ELKA	5.6	6.0	6.9	6.2	6.3	5.2	4.6	6.1	6.3	6.4	4.8	5.2	5.6	5.2	5.9	4.3	4.3	5.6
MOM LP 792	5.6	6.3	6.6	6.3	6.3	5.4	4.7	6.3	5.7	5.8	5.0	4.0	5.8	5.4	5.9	4.4	4.8	5.5
NK 80389	5.1	6.6	6.5	6.7	6.4	5.5	4.1	6.3	5.8	5.5	5.0	4.3	6.3	4.3	5.7	4.2	5.4	5.5
* REGAL	5.2	5.6	5.8	6.0	6.3	5.5	4.6	5.9	5.7	5.5	5.2	4.2	5.9	4.9	6.5	5.4	5.6	5.5
* BARRY	5.3	6.4	6.6	6.5	6.0	5.5	4.6	6.0	6.5	5.9	5.3	3.6	6.1	4.7	5.2	4.3	4.8	5.5
* MANHATTAN	5.6	6.1	6.7	6.0	5.9	5.5	5.4	6.2	4.8	5.5	4.3	4.2	5.6	5.2	5.3	4.2	5.4	5.4
* OMEGA	5.7	6.2	6.8	6.5	5.9	5.4	4.6	6.6	5.7	3.4	4.9	3.7	5.9	4.8	6.0	4.5	5.3	5.4
MOM LP 210	5.5	5.7	6.2	6.2	6.0	5.3	5.3	6.2	5.5	4.6	4,3	4.6	5.5	5.3	5.8	4.8	4.7	5.4
* DELRAY	5.6	6.0	6.0	6.5	6.1	5.1	5.3	5.5	6.7	3.3	4.3	4.5	5.8	5.7	5.4	4.7	4.2	5.3
NK. 79307	4.8	5.5	6.0	5.5	6.6	5.3	5.6	6.0	5.3	5.7	3.9	3.9	5.5	4.6	6.0	5.0	4.6	5.3
WWE 19	5.7	5.2	7.0	6.5	5.8	5.2	4.2	6.2	5.5	4.7	3.9	4.9	4.7	5.3	5.2	4.3	5.1	5.3
CIGIL	5.3	5.5	6.8	6.5	6.4	5.4	4.8	5.9	6.0	5.8	3.4	4.7	2.8	5.5	5.3	4.6	4.4	5.2
* CITATION	5.2	6.0	6.0	5.5	5.5	5.1	4.4	5.8	6.0	5.8	4.5	3.8	5.7	5.1	5.4	5.0	4.3	5.2
COCKADE	5.4	5.9	6.4	6.5	5.9	5.5	5.0	6.3	6.0	5.1	4.0	3.2	4.9	5.2	4.9	4.4	4.2	5.2
NK 79309	4.9	5.3	5.8	5.0	5.8	5.6	5.9	5.5	5.5	4.9	3.6	3.4	5.3	4.7	5.2	5.1	4.3	5.1
CUPIDO	5.4	5.8	6.0	6.3	4.8	5.3	4.8	5.6	4.7	5.5	4.4	3.3	4.8	5.2	4.3	4.3	4.2	5.0
PIPPIN	5.0	4.9	4.7	4.8	4.7	5.0	3.9	4.8	5.2	4.1	3.6	3.7	3.4	4.4	3.6	3.8	4.6	4.4
* LINN	3.4	4.4	3.8	3.2	3. 3	4.9	3.4	3.2	3.5	5.5	2.1	3.6	2.5	3.3	2.8	3.3	3.2	3.5
LSD VALUE	0.5	0.5	1.0	0.8	0.6	0.4	0.9	0.5	2.0	1.0	0.7	1.4	0.6	1.0	1.1	0.4	1.0	0.2

* COMMERCIALLY AVAILABLE VARIETY

1/ TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).
UCR - TURFGRASS RESEARCH CENTER - PROJECT SUMMARY

Special	
Title:National Tall Fescue Trial	
Objective: <u>To evaluate tall fescue in southern California</u> .	
NameV. A. GibeaultDept. Coop. Ext.PhoneX3575NameR. AutioDept. Coop. Ext.PhoneX4430	
Species/Cultivars: 72 tall fescue cultivars	
Management:Mowing Frequency1 x/Wk .Height $1\frac{1}{2}$ in.Fertilizer-MaterialRate $1\frac{\#}{N/6/6} \frac{wk}{wk}$.Irrigation - $/X/$ as needed $\%$ ET//Other (Specify Below)Special	
Experimental Design: // CRD /X/ RCB // SPLT // Other No. of Reps 3 Size of Rep. 60 x 30 Total Plot 60 x 90 Treatments:	
2) Variable Frequency	
Special Instructions/Comments:	

I

1

1987 NATIONAL TALL FESCUE TEST

Entries and Sponsors

Entry

No.	Name	Sponsor	No.	Name	Sponsor
1	Adventure	Warren's Turf Nursery	36	PST-5AP	Turf-Seed, Inc.
2	BAR Fa 7851 (Barnone)	Barenbrug Holland	37	PST-5HF (Amigo)	Northrup King Co.
3	Trident	Seed Research of Oregon	38	Jaguar	Zajac Performance Seeds
4	Titan	Seed Research of Oregon	39	PST-DBC	Pure-Seed Testing, Inc.
5	Pick DDF	Pickseed West, Inc.	40	Olympic	Turf-Seed, Inc.
6	Pick 127	Pickseed West, Inc.	41	Jaguar II	Zajac Performance Seeds
7	Pick 845PN	Pickseed West, Inc.	42	Monarch	Turf-Seed, Inc.
8	Pick SLD (Emperor)	Zajac Performance Seeds	43	Apache	Turf-Seed, Inc.
9	PE-7	Reed Funk - Rutgers	44	PST-5DM	Pure-Seed Testing, Inc.
10	PE-7E	Reed Funk - Rutgers	45	Pick DM	Pickseed West, Inc.
11	Hubbard 87	Reed Funk - Rutgers	46	Normarc 99	Normarc, Inc.
12	Syn Ga	O. M. Scott & Sons	47	Pacer	International Seeds, Inc.
13	Legend	Agway	48	Carefree	International Seeds, Inc.
14	Taurus	Turf Merchants, Inc.	49	Richmond	Jonathan Green, Inc.
15	Aztec	Turf Merchants, Inc.	50	Tip	NPI Seed, Inc.
16	Sundance	Seaboard Seed Co.	51	Ку-31	
17	Fatima	Van der Have Oregon, Inc.	52	Bel 86-1	Jack Murray - USDA, ARS
18	Normarc 25	Reed Funk - Rutgers	53	Bel 86-2	Jack Murray - USDA, ARS
19	Normarc 77	Reed Funk - Rutgers	54	PST-5EN	Pure-Seed Testing, Inc.
20	KWS-DUR	KWS-Einbeck	55	PST-5F2 (Winchester)	E. F. Burlingham
21	KWS-BG-6	KWS-Einbeck	56	Finelawn 5GL	Finelawn Research Corp.
22	Willamette	Willamette Seed & Grain	57	Finelawn I	Finelawn Research Corp.
23	Chieftain	Roberts Seed Co.	58	Rebel	Loft's Seed, Inc.
24	Pick GH6	Pickseed West, Inc.	59	Rebel II	Loft's Seed, Inc.
25	Thoroughbred	Pickseed West, Inc.	60	Tribute	Loft's Seed, Inc.
26	Pick TF9	Pickseed West, Inc.	61	Arid	Jacklin Seed Co.
27	PST-50L	Turf-Seed, Inc.	62	Wrangler	Jacklin Seed/LESCO, Inc.
28	PST-5D7 (Murietta)	Pure-Seed Testing, Inc.	63	Mesa	Jonathan Green, Inc.
29	Cimmaron	LESCO, Inc.	04	JB-2	Jacklin Seed Co.
30	Bonanza	Cenex Seed Plant	65	Falcon	E. F. Burlingham
31	PST-5AG	Pure-Seed Testing, Inc.			
32	PST-5BL (Silverado)	Pure-Seed Testing, Inc.			
33	PST-5MW	Pure-Seed Testing, Inc.			
34	Trailblazer	LESCO, Inc.			
35	PST-5D1 (Eldorado)	Pure-Seed Testing, Inc.			

Entry

LOCATIONS SUBMITTING DATA FOR 1988

<u>State</u>	Location	<u>Code</u>
Arkansas	Fayetteville	AR1
Arizona	Tucson	AZ1
California	Santa Clara	CA1
California	Santa Ana	CA2
California	Riverside	CA3
District of Columbia	National Mall	DC2
Idaho	Post Falls	ID2
Illinois	Urbana	IL1
Indiana	West Lafayette	IN1
Kansas	Manhattan	KS1
Kansas	Wichita	KS2
Maryland	Beltsville (medium maintenance)	UB1
Maryland	Beltsville (low maintenance)	UB2
Maryland	Silver Spring	MD1
Michigan	East Lansing	MI1
Missouri	St. Louis	MO3
New Jersey	North Brunswick	NJ1
New Jersey	Adelphia	NJ2
New Jersey	Martinsville	NJ3
New York	Ithaca	NY1
New York	Riverhead, Long Island	NY2
Ohio	Marysville	OH2
Oklahoma	Stillwater	OK1
Oregon	Hubbard	OR1
Oregon	Corvallis	OR2
Rhode Island	Kingston	RI1
Texas	Dallas (high mowing)	TX1
Texas	Dallas (low mowing)	TX2
Virginia	Blacksburg	VA1
Virginia	Blackstone	VA2
Virginia	Richmond	VA3
Washington	Ritzville	WA4
Washington	Mukilteo	WA5
Washington	Yakima	WA6

BLOCK #7

NATIONAL TALL FESCUE TRIAL CA3 Riverside

64	30	47	06	01	12	54	63	57	33	38	36
52	72	56	27	59	32	58	60	69	13	35	14
10	17	62	40	68	41	45	05	42	09	08	39
37	18	34	67	24	03	26	46	55	31	66	04
22	20	44	50	29	53	71	15	43	70	02	48
19	28	65	61	23	16	25	07	21	49	11	51
42	08	49	43	19	56	52	47	32	25	53	60
04	48	70	66	61	44	30	50	46	05	24	15
09	69	57	33	10	40	20	37	59	68	58	45
51	55	21	14	62	34	67	72	54	07	23	29
02	39	31	36	17	22	18	06	63	26	03	12
13	35	11	38	64	28	27	65	71	41	01	16
53	03	41	01	49	31	70	09	52	61	10	44
23	60	58	45	02	33	35	21	18	47	20	37
05	46	54	63	43	08	04	48	56	19	27	34
07	68	26	15	42	57	39	38	72	64	30	22
59	32	29	16	11	36	14	66	50	65	28	40
51	24	25	67	71	13	69	55	06	62	17	12
											_

Entry Name	Entry Name
l Adventure	37 PST-5HF
2 BAR Fa 7851	38 Jaguar
3 Trident	39 PST-DBC
4 Titan	40 Olympic
5 Pick DDF	41 Jaguar II
6 Pick 127	42 Monarch
7 Pick 845PN	43 Apache
8 Pick SLD	44 PST-5DM
9 PE-7	45 Pick DM
10 PE-7E	46 Normarc 99
11 Hubbard 87	47 Pacer
12 Syn Ga	48 Carefree
13 Legend	49 Richmond
14 Taurus	50 Tip
15 Aztec	51 Ky-31
16 Sundance	52 Bel 86-1
17 Fatima	53 Bel 86-2
18 Normarc 25	54 PST-5EN
19 Normarc 77	55 PST-5F2
20 KWS-DUR	56 Finelawn 5GL
21 KWS-BG-6	57 Finelawn I
22 Willamette	58 Rebel
23 Chieftan	59 Rebel II
24 Pick GH6	60 Tribute
25 Thoroughbred	
26 Pick TF9	62 Wrangler
27 PST-50L	63 Mesa
28 PST-5D7	64 JB-2
29 Cimmaron	65 Falcon
30 Bonanza	66 5MI + Endophyte
31 PST-5AG	67 5MI
32 PST-5BL	68 517
33 PST-5MW	69 5D6
34 Trailblazer	70 Pick 151
35 PST-5D1	71 DDF MD
36 PST-5AP	72 DDF GP87

Objectives:

To evaluate the suitability of turf-type tall fescue for southern California.

Methods and Materials:

In october, 1987, 72 cultivars of tall fescue were seeded to 5' x 5' plots at a rate of 4.4 #/M. The plots are mowed at 1-1/2", fertilized at 1# N/M every 6 weeks and irrigated as needed.

Ν

۰.

.

TABLE 1.

MEAN TURFGRASS QUALITY RATINGS OF TALL FESCUE CULTIVARS AT THIRTY-THREE LOCATIONS IN THE UNITED STATES 1988 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF 1/

NAME	AR1	AZ1	CA1	CA2	CA3	DC2	ID2	ILI	INI	KS1	KSZ	MD1	MI1	M03	NJ1	NJ2	N.J.3
HUBBARD 87	5.0	5.9	7.3	6.1	6.4	4.7	5.9	7.5	7.3	7.5	8.1	5.3	6.9	6.3	6.4	6.9	5.5
PE-7E	5.0	6.3	7.0	6.2	6.4	4.1	6.4	7.5	7.0	7.5	8.0	5.3	•	5.7	5.9	6.7	5.6
PST-5HN	4.1	6.8	7.0	5.8	6.0	4.4	4.9	7.0	6.0	7.5	7.8	5.0	6.4	6.0	6.3	6.9	6.2
NORMARC 25	4.5	6.5	6.8	6.1	6.3	5.7	6.0	7.8	7.2	7.0	7.9	4.7	•	5.8	5.8	5.7	4.9
PE-7	5.2	6.1	6.9	5.9	6.4	3.9	5.8	7.3	6.9	7.4	7.9	5.3	5.7	6.4	5.8	7.0	5.9
* PST-5HF (AMIGO)	4.9	6.3	6.9	6.0	6.4	4.1	6.0	7.5	6.4	7.2	7.7	5.0	6.9	5.5	5.5	6.6	5.7
* AZTEC	5.0	5.8	7.1	6.2	6.1	3.4	5.5	7.3	5.2	7.5	7.8	5.7	6.1	6.0	6.0	7.2	6.2
PICK DN	4.7	6.4	7.1	6.4	6.3	4.0	6.1	7.1	5.7	7.8	7.7	5.0	6.8	6.2	6.1	6.7	5.7
* MONARCH	5.2	5.6	6.8	6.0	6.1	3.9	5.9	7.3	6.7	7.2	7.8	5.0	6.7	5.4	6.3	6.7	5.5
* BONANZA	5.0	5.6	7.0	5.8	6.5	5.6	5.9	7.8	6.9	6.9	7.7	5.3	6.4	5.6	5.5	6.4	5.1
PICK TF9	5.7	5.4	7.0	6.2	6.1	4.4	5.6	7.2	6.4	7.5	8.0	5.7	6.2	5.8	6.1	6.7	5.5
PICK 127	4.9	6.3	6.5	5.9	6.0	5.0	5.4	7.4	6.6	7.7	7.8	4.3	6.6	6.1	6.2	6.5	5.8
PICK 845PN	5.0	6.6	7.3	5.7	6.0	3.1	5.6	7.3	6.5	7.4	7.7	5.0	5.9	5.6	5.8	7.0	5.6
* OLYMPIC	5.5	6.4	6.4	5.8	6.4	5.2	5.4	7.6	7.1	6.9	7.5	4.3	6.0	5.6	4.9	5.4	4.7
NORMARC 77	4.7	6.3	6.9	5.7	6.2	5.3	5.4	7.7	7.2	7.0	7.7	5.7	5.9	6.0	5.4	5.9	4.9
KWS-BG-6	5.1	6.7	6.6	5.6	6.1	3.2	6.0	6.3	6.5	8.5	7.7	5.0	•	5.6	5.3	7.1	5.7
* CHIEFTAIN	4.6	6.3	6.4	6.0	6.2	4.0	5.8	7.1	6.8	7.1	7.4	5.7	6.1	5.5	5.0	5.9	5.8
* THOROUGHBRED	4.8	6.6	6.4	5.7	6.4	6.1	5.9	7.1	7.2	6.8	7.5	4.7	6.3	5.1	4.9	6.0	5.3
PST-5AP	4.9	6.2	6.3	5.9	6.2	4.2	5.5	7.1	6.2	7.0	7.5	5.0	6.2	5.4	5.1	5.9	5.4
PST-50L	5.3	6.3	6.8	5.9	6.4	4.1	4.6	7.1	6.5	7.0	7.8	4.7	6.3	5.2	5.2	5.7	5.1
* REBEL II	5.3	5.7	6.4	5.9	6.4	5.9	5.6	7.2	6.8	6.8	7.1	5.7	6.6	5.7	5.2	5.3	5.1
* TRIBUTE	4.9	6.5	6.5	6.0	6.5	4.4	5.9	6.9	5.9	6.9	7.9	5.0	6.7	5.8	5.5	5.5	5.0
* TRAILBLAZER	4.1	5.3	6.8	5.9	6.4	4.2	5.3	7.2	6.4	7.4	7.4	4.0	6.3	5.8	5.7	6.4	5.8
PICK 6H6	5.2	5.5	6.8	6.1	6.1	4.0	5.1	7.2	6.3	7.5	7.8	4.3	6.4	5.5	5.8	6.5	5.4
* HESA	5.1	6.5	6.6	6.0	6.2	5.9	5.4	7.4	6.3	6.8	7.1	6.0	6.3	5.2	5.0	5.4	4.6
NORMARC 99	4.8	5.4	6.6	5.9	6.1	4.0	4.9	7.1	5.5	7.5	7.8	5.0	6.0	5.8	6.5	6.9	5.4
* CIMMARON	4.9	5.9	6.7	5.7	6.6	4.3	5.9	7.3	6.5	6.9	7.5	5.3	6.2	5.4	4.4	6.0	5.0
PST-5EN	5.0	6.3	•	5.7	6.4	4.9	5.7	7.3	6.3	7.0	7.6	6.0	5.8	5.6	5.0	5.3	5.0
PST-5AG	4.5	5.8	6.9	6.4	6.3	4.3	5.3	7.3	6.4	6.9	7.6	5.0	6.4	5.7	4.6	5.4	5.3
* WRANGLER	4.8	5.8	6.7	5.6	6.2	5.4	5.8	7.2	6.7	6.9	7.6	5.7	6.2	5.0	5.0	5.4	5.2
PICK DOF	4.6	5.8	7.0	6.4	6.0	3.2	5.4	6.9	6.1	7.5	7.8	5.3	6.3	5.3	5.5	6.6	5.7
* PST-5D1 (ELDORADO)	4.5	5.9	6.6	5.9	6.3	5.3	5.7	7.1	5.9	7.4	7.7	4.7	6.3	5.3	5.9	6.5	5.4
* PST-5F2 (WINCHESTER)	4.4	6.3	6.3	5.5	6.2	4.4	5.8	6.9	5.4	7.0	7.5	5.0	5.9	6.0	5.3	5.5	4.9
* TITAN	4.5	6.1	5.9	5.7	6.5	5.4	6.0	7.4	6.8	6.5	7.5	5.7	6.0	6.0	4.4	5.1	4.8
* APACHE	5.1	5.8	6.3	5.6	6.4	4.2	5.7	7.7	6.7	7.2	7.6	4.7	6.7	5.3	4.8	5.3	5.2
* FINELAWN 5GL	4.7	5.0	6.4	5.8	6.5	6.0	5.8	7.0	6.8	6.5	7.5	4.7	5.8	5.5	4.3	5.0	4.7
PST-5DM	4.5	4.9	7.0	6.0	6.1	3.2	5.6	7.2	5.8	7.1	7.7	5.3	5.7	5.2	5.8	6.2	5.3
* JAGUAR II	4.6	5.9	6.5	5.7	6.7	4.2	6.2	7.3	6.3	6.7	7.6	5.3	7.4	5.1	4.3	5.5	4.6
PST-DBC	4.5	5.7	6.2	5.7	6.5	4.4	6.0	7.2	6.6	6.7	7.4	5.3	6.2	5.1	4.7	5.8	5.0
JB-2	4.7	5.4	6.5	5.6	6.4	5.0	6.2	6.6	6.3	6.9	7.1	5.0	6.1	5.0	4.6	5.1	4.6

* COMMERCIALLY AVAILABLE VARIETY

TABLE 1. (continued)

MEAN TURFGRASS QUALITY RATINGS OF TALL FESCUE CULTIVARS AT THIRTY-THREE LOCATIONS IN THE UNITED STATES 1988 DATA

TURFGRASS QUALITY RATINGS 1-9: 9=IDEAL TURF

NAME	AR1	AZI	CA1	CA2	CA3	DC2	102	IL1	INI	KS1	KS2	MD1	MII	M03	NJ1	KJ2	NJ3
* TAURUS	4.8	6.0	6.5	5.9	6.3	3.8	5.5	7.3	6.0	6.9	7.2	5.7	6.2	5.2	5.0	5.0	5.3
* BAR FA 7851 (BARNONE)	4.6	5.2	6.5	5.7	6.3	5.7	5.5	7.0	6.6	7.0	7.3	4.7		5.9	4.7	5.8	5.1
KWS-DUR	4.4	5.7	6.8	5.8	6.2	3.6	6.4	7.4	6.1	7.2	7.3	4.3	6.0	5.6	5.7	6.5	5.7
* SUNDANCE	4.8	5.9	6.1	6.0	6.3	4.4	5.3	7.3	6.0	7.1	7.5	4.7	6.2	5.5	5.3	5.4	5.3
BEL 86-2	4.5	5.7	6.9	5.8	6.0	3.1	5.6	6.6	6.4	6.9	7.6	5.3	5.7	5.3	5.3	5.5	5.1
* ARID	5.6	5.4	6.1	5.9	6.3	4.8	6.0	6.7	6.6	6.6	7.3	4.7	6.1	5.4	4.5	4.7	4.8
* CAREFREE	4.1	6.5	6.4	5.7	6.6	4.8	6.0	6.8	6.4	7.1	7.7	4.3	6.1	5.5	4.3	4.8	4.5
* ADVENTURE	4.3	6.D	6.2	5.6	6.6	5.3	5.7	7.3	6.8	6.8	7.2	4.7	6.1	5.4	4.0	4.8	4.8
* JAGUAR	4.5	5.4	6.3	5.9	6.3	4.8	5.5	7.7	6.9	6.8	7.1	5.0	5.7	5.2	4.2	5.0	4.3
BEL 86-1	4.4	6.0	6.5	5.7	6.1	4.7	5.6	7.3	6.1	6.9	7.6	5.0	5.7	5.2	5.1	5.9	5.4
* PST-58L (SILVERADO)	4.7	5.1	6.7	5.8	6.1	3.7	5.6	6.6	5.4	7.3	7.1	4.3	6.1	5.5	6.0	6.8	4.7
* LEGEND	5.2	5.2	6.3	5.7	5.9	3.9	5.6	6.8	6.7	7.0	7.5	5.0	6.2	5.0	4.8	5.7	4.5
* TRIDENT	4.4	6.0	6.4	5.5	6.4	4.9	5.4	7.2	6.5	6.8	7.2	5.0	6.1	5.3	4.6	5.7	3.5
* REBEL	5.2	5.6	6.4	5.8	6.5	5.9	5.6	6.9	6.3	6.6	6.9	5.0	6.3	5.2	4.3	4.4	3.9
* PST-507 (HURIETTA)	3.8	5.1	7.1	6.3	6.1	4.1	5.2	6.8	6.2	7.1	7.5	5.0	5.6	5.2	4.9	6.0	5.0
* FALCON	4.6	5.4	5.8	5.4	6.2	4.3	4.8	6.9	5.9	6.4	7.1	5.0	6.6	5.3	3.8	4.4	4.1
* PACER	4.9	5.2	5.6	5.3	6.0	5.2	5.8	6.7	5.9	6.7	7.1	5.0	5.9	5.6	4.0	3.9	4.1
* FINELAWN I	4.9	5.4	6.4	5.2	6.1	5.7	5.8	6.9	6.6	6.2	7.0	5.3	5.9	4.8	3.5	4.5	3.8
* PICK SLD (EMPEROR)	4.3	5.4	6.8	6.2	6.1	2.6	4.4	6.5	5.8	7.1	7.7	5.0	6.0	5.2	5.3	6.0	4.6
* VILLAMETTE	5.0	5.8	5.5	5.4	6.1	4.8	5.7	6.5	6.7	5.2	7.5	5.0	5.7	5.0	3.5	4.2	3.3
* RICHMOND	4.3	5.5	6.1	5.6	6.2	4.4	5.6	6.9	6.2	6.3	7.0	4.7	6.1	5.2	4.0	4.0	4.3
* TIP	4.6	5.7	5.5	5.5	6.1	4.3	5.5	6.4	5.7	6.3	6.6	4.7	5.9	5.2	3.3	3.5	4.0
SYN GA	4.5	5.8	5.3	5.6	5.9	4.7	5.4	6.1	6.1	6.1	7.1	4.0	5.4	5.0	3.4	3.7	3.9
FATIMA	4.6	5.4	5.4	5.2	5.7	4.9	5.7	7.0	5.4	6.1	6.7	5.0	5.4	4.8	3.3	3.9	3.9
* KY-31	5.0	4.7	4.8	4.7	5.9	6.0	5.1	6.2	6.0	5.2	6.5	5.0	5.0	4.8	2.6	3.0	3.6
LSD VALUE	0.7	1.0	0.5	0.5	0.4	1.7	0.9	0.7	0.7	0.4	0.4	1.4	0.8	0.5	0.7	0.8	0.8

* COMMERCIALLY AVAILABLE VARIETY

1/ TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES. SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

•

Proceedings of the UCR Turfgrass Research Conference and Field Day, September 1989

	UCR - TURFGRASS R	ESEARCH CENTER -	PROJECT SUMMA	RY
Completion	te <u>May 86</u> Date tional Kentucky B		Project No Plot No	15
Objective:	To evaluate Ken	tucky bluegrass		lifornia.
Investigator Name V.A. Name R. Au	r(s): Gibeault utio	Dept. Co Dept. Co	oop Ext Phor oop Ext Phor	ne <u>X 3575</u> ne <u>X 4430</u>
Species/Cult	civars: 72 Kentu	icky bluegrass ci	ultivars	
Fertilizer-M Irrigation -	Mowing Frequency Material • <u>/X</u> / as needed	% ET_0	Rate <u>1# N/M/6</u> / /Other (Sp	<u>1-1/2</u> in. wk. ecify Below)
Experimental No. of Reps Treatments:	Design: // CRD 3 Size of Re	$\frac{7}{2}$ RCB $\frac{7}{30}$ RCB $\frac{7}{30}$		60 x 90
Data Collect	ion: 1) Variable 2) Variable 3) Varieble	·····	Frequency Frequency Frequency	
Special Inst	ructions/Comments	:		
		······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Entries and Sponsors

Entry					
Entry No.	Name	Sponsor			
NO.	Halle	sponsor	Entry		
1	Classic	Peterson Seed Company	No.	Name	Sponsor
2	Monopoly	Peterson Seed Company	no.	Name	sponsor
3	Barzan	Mount Emily Seeds, Inc.	36	Ba 73-540	0. M. Scott & Sons
4	Gnome	Turf Merchants, Inc.	37	Parade	Van der Have - Oregon, Inc.
5	Tendos	Turf Merchants, Inc.	38	Asset	Van der Have - Oregon, Inc.
2	Tendos	full merchants, Inc.	39	HV 97	Pure-Seed Testing, Inc.
	P-104 (Princeton 104)	Lafata Cand Inc	40	Lofts 1757	Loft's Seed, Inc.
6		Loft's Seed, Inc.	40	LOFUS 1757	Lott's seed, Inc.
7	Ram-1	Jacklin & Loft's Seed, Inc.	41	Cheri	Jacklin Seed Co.
8	Compact	Tib Szego Associates	41		
9	Joy	Green Seed Company		Eclipse	Turf Cultivar Assoc.
10	Sydsport	E. F. Burlingham & Sons	43	Liberty	Zajac Performance Seeds
	22 / J 10 / J		44	Destiny	Jonanthan Green & Son
11	Haga	E. F. Burlingham & Sons	45	Dawn	LESCO, Inc.
12	Georgetown	Loft's Seed, Inc.			
13	Somerset	Loft's Seed, Inc.	46	Merion	
14	Mystic	Loft's Seed, Inc.	47	Nassau	Jacklin & Loft's Seed, Inc.
15	Baron	Loft's Seed, Inc.	48	Amazon	Jacklin Seed Co.
			49	239 (Suffolk)	Loft's Seed, Inc.
16	Able I	Warren's Turf Nursery, Inc.	50	Wabash	Loft's Seed, Inc.
17	A-34	Warren's Turf Nursery, Inc.			
18	Merit	Full Circle, Inc.	51	Julia	LESCO & Jacklin Seed Co.
19	BAR VB 577	Barenbrug Holland	52	Ikone	Jacklin Seed Co.
20	Annika	Production Services	53	Glade	Jacklin Seed Co.
			54	Huntsville	Jacklin Seed Co.
21	Conni	Production Services	55	F-1872 (Freedom)	Jacklin Seed Co.
22	Kenblue	-			
23	Bristol	O. M. Scott & Sons	56	Aquila	Northrup King Co.
24	Victa	O. M. Scott & Sons	57	K1-152	Northrup King Co.
25	Ba 70-139 (Coventry)	O. M. Scott & Sons	58	Harmony	Rothwell Seeds
			59	Welcome	Rothwell Seeds
26	Ba 70-242	O. M. Scott & Sons	. 60	Aspen	Northrup King Co.
27	Ba 72-441 (Abbey)	O. M. Scott & Sons			
28	Ba 72-492 (Estate)	O. M. Scott & Sons	61	Rugby	Northrup King Co.
29	Ba 72-500 (Chateau)	Finelawn Research Corp.	62	Irenton	Northrup King Co.
30	Ba 73-626 (Kelly)	Northrup King Co.	63	K3-178	Northrup King Co.
50	bu is one (merry)	nor throp hing and	64	Midnight	Turf-Seed, Inc.
31	BAR VB 534	Barenbrug Holland	65	Challenger	Turf-Seed, Inc.
32	Cynthia	Van der Have - Oregon, Inc.		end tenget	
33	NE 80-88	Univ. of Nebraska - I. Riordan	66	Blacksburg	Turf-Seed, Inc.
34	America	Pickseed West, Inc.	67	PST-CB1	Pure-Seed Testing, Inc.
35	Ba 69-82	O. M. Scott & Sons	68	S. D. Certified	, are been rearing, mer
55	04 07-0C	e. n. sever a sons	69	WW Ag 468	E. F. Burlingham & Sons
			70	WW Ag 491	E. F. Burlingham & Sons
			10		c. r. bu (fightin a solls
			71	WW Ag 495	E. F. Burlingham & Sons
			72	WW Ag 496	E. F. Burlingham & Sons
			16	HW //g 470	c. r. bui crigitan a sons

LOCATIONS SUBMITTING DATA FOR 1988

State	Location	<u>Code</u>
British Columbia	Agassiz	BC1
California	Ventura	CA4
District of Columbia	Wash. Monument Grounds	DC1
Idaho	Post Falls	ID2
Indiana	West Lafayette	IN1
Iowa	Ames	IA1
Kansas	Manhattan	KS1
Kansas	Wichita	KS2
Kentucky	Lexington	KY1
Manitoba	Winnipeg	MB1
Maryland	Beltsville	UB1
Maryland	Silver Spring	MD1
Michigan	East Lansing	MI1
Missouri	Columbia	MO1
Nebraska	Lincoln (low mowing)	NE1
Nebraska	Lincoln (high mowing)	NE2
New Jersey	Adelphia (low nitrogen)	NJ1
New Jersey	Adelphia (high nitrogen)	NJ2
Ohio	Columbus	OH1
Oklahoma	Stillwater	OK1
Oregon	Hubbard	OR1
Rhode Island	Kingston	RI1
Virginia	Blacksburg	VA1
Virginia	Blackstone	VA2
Washington	Pullman	WA1
Washington	Puyallup	WA3
Washington	Ritzville (dense shade)	WA4

UCR NATIONAL KENTUCKY BLUEGRASS TRIAL

 \wedge

N

			-									Entry	Name	Entry	Name
64	30	47	06	01	12	54	63	57	33	38	36	1	Classic	37	Parade
52	72	56	27	59	32	58	60	69	13	35	14	23	Monopoly Barzan	38 39	Asset HV 97
52	12	1 30	21	59	32	50	00	03	13	33	14	4	Gnome	40	Lofts 1757
10	17	62	40	68	41	45	05	42	09	08	39	5	Tendos	41	Cheri
			10	00		45	05	42	0,	00	55	6	P-104	42	Eclipse
37	18	22	67	24	03	26	46	55	31	66	04	7	Ram-1	43	Liberty
												8	Compact	44	Destiny
34	20	44	50	29	53	71	15	43	70	02	48	9	Joy .	45	Dawn
												10	Sydsport	46	Merion
19	28	65	61	23	16	25	07	21	49	11	51	11	Haga	47	Nassau
42	08	49	43	19	56	52	47	32	25	53	60	12	Georgetown Somerset	48 49	Amazon
42	08	49	43	19	50	52	4/	32	25	53	60	14	Mystic	49 50	239 Wabash
04	48	51	66	61	44	30	50	46	05	24	15	15	Baron	51	Julia
04	40	51	00	01		50	50	40	05	24	15	16	Able I	52	Ikone
09	69	57	33	10	40	20	37	59	68	58	45		A-34	53	Glade
									00	50			Merit	54	Huntsville
70	55	21	14	62	34	67	72	54	07	23	29		BAR VB 577		F-1872
													Annika		Aquila
02	39	31	36	17	22	18	06	63	26	03	71	N42603	Conni		K1-152
												22	Kenblue	58	Harmony
13	35	11	38	64	28	27	65	12	41	01	16	23	Bristol	59	Welcome
												_ 24	Victa	60	Aspen
53	03	41	01	49	31	70	09	52	61	10	44	25	Ba 70-139	61	Rugby
_												26	Ba 70-242	62	Trenton
23	60	58	45	02	33	35	21	18	47	20	37	27	Ba 72-441	63	K3-178
												28	Ba 72-492	64	Midnight
05	46	54	63	43	08	04	48	56	19	27	34	29	Ba 72-500	65	Challenger
												30	Ba 73-626	66	Blacksburg
07	68	26	15	42	57	39	38	72	64	30	65	31	BAR VB 534	67	PST-CB1
												32	Cynthia	68	South Dakot
59	32	29	16	11	36	14	66	50	22	28	40	33	NE 80-88		Cert.
												34	America	69	WW Ag 468
71	24	25	12	51	13	69	55	06	62	17	67	35	Ba 69-82		WW Ag 491
												36	Ba 73-540		WW Ag 495
															WW Ag 496

TABLE 1.

MEAN TURFGRASS QUALITY RATINGS OF KENTUCKY BLUEGRASS CULTIVARS AT TWENTY-SEVEN LOCATIONS IN THE UNITED STATES AND CANADA 1988 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF 1/

NAME	BC1	CA4	DC1	IA1	ID2	IN1	KS1	KS2	KY 1	MB 1	MD 1	MI1	M01	NE 1
* MIDNIGHT	5.4	6.7	4.4	3.6	8.1	7.1	7.1	8.3	5.1	7.6	6.9	7.5	7.2	6.3
* BLACKSBURG	5.8	6.3	2.2	3.9	7.7	7.1	7.3	8.4	4.8	8.3	6.9	7.2	7.2	5.4
* P-104 (PRINCETON 104)	5.8	5.8	2.4	3.6	7.5	6.9	6.5	8.3	5.0	7.2	7.1	7.8	7.2	5.9
* ASSET	5.8	6.1	5.2	3.4	7.3	6.9	6.5	7.4	5.0	7.9	6.8	6.8	7.0	5.2
* ECLIPSE	5.9	5.9	3.9	4.0	7.8	6.9	6.9	7.8	5.3	7.6	6.2	6.9	6.8	6.4
* AMERICA	4.8	5.7	4.5	3.9	7.0	6.8	7.1	7.8	5.8	7.5	6.3	6.7	6.7	6.1
* LOFTS 1757	5.4	6.8	3.7	4.8	6.7	6.6	6.8	7.7	5.1	7.2	6.5	7.2	7.2	5.1
* GLADE	5.4	6.3	5.2	4.1	8.3	7.0	6.4	7.8	5.0	7.8	6.5	6.9	7.0	6.3
* BRISTOL	5.0	6.5	3.3	4.0	7.2	6.6	6.5	7.5	5.2	7.0	6.2	7.4	7.1	6.1
* CHERI	5.6	5.9	3.9	3.4	7.4	6.6	6.7	7.8	4.8	7.7	6.5	6.5	6.7	6.2
BA 69-82	5.5	5.9	4.4	4.0	6.9	6.1	6.6	7.7	4.9	7.3	5.8	6.8	6.7	5.5
WW AG 496	5.2	5.6	5.1	4.9	6.6	6.7,	•	7.6	5.2	8.2	6.9	6.2	6.9	7.0
* F-1872 (FREEDOM)				5.3	7.2	6.6		6.9	4.8	7.0	6.1	6.6	7.1	6.6
* CHALLENGER	4.8	6.4	3.3	4.3	7.0	6.9	7.3	7.8	5.3	7.5	5.1	7.3	6.8	5.8
BA 73-540	6.0	6.0	3.6	4.1	7.5	6.3	6.1	7.6	4.3	7.5	6.9	6.9	7.0	5.7
* ABLE I	4.7	6.8	3.1	5.1	7.1	6.8	7.3	7.3	5.2	7.7	6.1	6.9	7.0	5.2
* ASPEN	5.0	5.9	3.9	4.8	6.6	6.8	7.2	7.4	5.7	7.5	6.6	7.1	7.2	5.4
* A-34	5.5	6.1	5.2	3.9	7.7	6.8	6.5	7.4	4.9	7.5	6.8	5.8	6.8	6.2
* BA 72~500 (CHATEAU)	5.5	6.1	3.3	3.8	6.8	6.1	6.5	7.6	4.5	7.3	5.9	6.9	7.0	5.6
* SYDSPORT	5.9	6.3	3.9	4.0	7.5	6.2	7.0	7.7	5.2	7.5	5.7	6.7	6.6	4.4
* CLASSIC	5.2	6.3	3.5	4.2	7.2	6.6	6.9	7.1	5.7	7.5	6.6	6.8	7.1	5.7
PST-CB1	•	6.5	3.6	4.0	7.5	6.6	6.7	7.4	5.9	6.9	6.4	6.8	6.9	5.4
* BA 70-139 (COVENTRY)	5.7	5.9	3.8	3.8	6.7	6.5	6.6	7.5	4.8	7.1	6.8	6.6	6.7	5.5
* SOMERSET	4.6	5.6	4.0	4.8	7.5	6.8	6.3	6.8	5.9	7.4	5.7	6.4	6.7	5.6
* BA 72-492 (ESTATE)	5.8	6.5	3.9	3.9	7.0	6.5	6.5	7.5	4.8	7.2	6.5	6.3	6.8	5.0
* MERIT	5.4	5.5	4.3	4.0	7.5	7.0	6.6	7.5	5.0	7.1	6.5	6.3	6.8	6.5
* CYNTHIA	5.3	5.4	3.4	4.3	7.3	7.1	7.0	7.3	5.0	8.7	5.6	5.8	6.8	5.1
* DAWN		6.0	3.8	4.3	7.0	5.2	6.5	7.5	5.5	6.5	6.6	6.8	7.0	5.3
* AQUILA	5.0	5.7	3.4	5.3	7.5	6.7		7.0	5.5	8.0	6.4	6.4	6.8	6.2
CONNI	•		2.4	3.3	7.9	6.6	6.4	7.3	4.6	8.3	6.3	5.9	6.3	5.3
BAR VB 534	5.3	4.9	3.5	4.4	6.9	7.0		7.2	5.0	8.2	6.8	5.8	6.5	6.7
* JULIA	5.4	6.1	5:6	4.3	6.5	5.5		7.0	5.4	7.3	4.8	6.4	7.0	4.2
* RAM-1	5.1	.6.0	2.9	3.8	8.0	5.8	6.9	7.3	4.6	7.9	6.3	6.9	7.1	6.3
* PARADE	4.9	6.2	4.1	4.5	6.3	6.2	6.6	• 7.3	5.4	7.7	6.0	6.3	7.0	6.8
* RUGBY	5.3	6.5	3.2	5.0	7.2	6.4	6.7	7.3	5.4	6.7	6.1	6.5	7.0	6.7
* BA 72-441 (ABBEY)	5.2	5.5	4.4	4.1	7.3	6.8	6.4	.7.3	5.0	7.5	6.5	6.6	7.1	5.6
* MONOPOLY	5.1	5.2	5.7	5.0	6.7	6.9	6.1	6.8	5.3	6.3	6.3	6.2	6.8	5.3
* BA 73-626 (KELLY)	5.1	5.6	4.3	4.2	6.9	6.9	6.1	7.7	5.5	7.2	6.7	5.9	7.0	6.2
* BARON	5.2	6.0	3.6	4.3	6.9	6.8	6.5	7.6	4.7	7.2	6.9	6.0	6.8	6.8
* LIBERTY	-	-	3.8	4.1	7.4	6.4	6.6	7.2	5.4	6.9	6.5	6.9	6.7	6.0

* COMMERCIALLY AVAILABLE VARIETY

TABLE 1. (continued) MEAN TURFGRASS QUALITY RATINGS OF KENTUCKY BLUEGRASS CULTIVARS AT TWENTY-SEVEN LOCATIONS IN THE UNITED STATES AND CANADA 1988 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF

NAME	BC1	CA4	DC1	141	102	IN1	KS1	KS2	KY1	MB1	MD 1	MI 1	M01	NE1
* MYSTIC	3.9	4.3	4.3	4.8	7.3 .	7.2	6.6	6.3	4.7	8.3	6.8	7.2	6.8	5.8
WW AG 495	4.6	5.7	5.4	4.8	7.9	6.0	•	7.3	5.3	7.9	6.5	5.9	6.7	5.3
K1-152	5.0	6.0	4.0	4.1	6.8	6.7	6.8	6.7	5.5	6.9	6.3	6.4	7.0	6.4
* TRENTON	5.1	6.6	4.0	4.1	7.1	6.6	6.7	7.1	5.7	6.7	6.6	6.6	6.8	5.1
* HAGA	4.8	6.1	4.0	4.3	7.1	6.6	6.7	7.1	5.3	7.4	6.1	6.8	6.9	5.8
* TENDOS	5.9	6.0	2.6	4.8	7.6	6.7	6.9	7.6	4.2	6.7	6.2	6.7	6.8	6.1
* 239 (SUFFOLK)	4.4	5.7	4.0	4.3	7.0	6.6	6.8	6.8	5.7	7.3	6.0	6.4	6.8	5.4
* NASSAU	5.2	6.3	2.8	4.0	6.9	6.1	6.8	7.8	5.5	6.8	5.9	6.7	7.0	5.1
* WABASH	4.3	5.4	6.7	5.0	6.5	6.8	6.7	6.4	6.5	7.7	6.3	5.9	6.7	5.1
* VICTA	5.4	5.8	4.8	4.7	6.5	6.8	6.5	7.9	5.0	6.8	7.0	6.3	6.9	4.3
* GEORGETOWN	4.8	6.4	3.6	4.4	6.7	6.4	6.7	7.3	5.3	6.6	6.2	6.8	7.1	5.3
HV 97	5.3	5.2	2.7	4.0	8.1	5.1	6.5	7.3	5.3	8.3	6.9	5.9	6.2	5.8
K3-178	5.1	6.0	3.5	4.6	7.1	6.5	6.3	6.8	5.9	6.9	6.2	6.6	7.0	5.1
NE 80-88	-	•	•	3.9	6.4	6.6		7.3	5.5	7.3	5.8	6.4	7.3	6.0
* DESTINY	•	•	2.4	4.3	6.8	5.9	•	7.8	5.6	6.4	5.5	6.9	6.8	5.5
* MERION	4.9	5.0	3.4	3.8	6.3	6.6	6.6	7.7	5.7	6.7	5.1	6.5	6.4	6.1
BAR VB 577	4.8	5.8	2.9	3.8	7.0	6.8	6.0	7.0	4.6	6.7	5.4	6.6	6.8	5.9
* WELCOME	6.1	•	2.5	4.5	7.7	6.9	6.6	7.4	5.3	8.3	6.6	6.0	6.6	4.9
BA 70-242	5.1	6.0	3.3	4.6	6.5	6.8	6.4	7.3	5.3	6.4	6.8	6.3	6.5	4.5
* HARMONY	5.7	-	3.3	4.4	6.9	7.0	6.9	7.2	5.1	7.2	6.8	5.9	6.6	6.0
WW AG 491	4.9	5.4	3.9	4.4	7.1	6.8		6.8	5.0	7.5	6.8	6.6	6.7	4.4
* IKONE	5.2	5.8	4.2	4.0	6.3	5.0	6.5	7.6	4.7	7.0	5.8	6.1	7.0	4.6
COMPACT	•	•	2.6	3.3	7.1	6.0	6.3	6.9	5.1	7.9	6.7	5.9	6.3	6.3
* GNOME	4.8	6.0	4.1	3.9	6.8	6.5	6.8	7.4	4.8	7.4	5.3	6.4	6.5	4.8
WW AG 468	4.9	5.3	2.1	4.1	6.0	7.0		7.5	4.9	7.1	4.6	6.1	6.1	6.8
* AMAZON	5.2	5.0	2.3	3.8	8.2	5.0		7.3	5.0	8.7	6.3	5.7	6.5	4.8
ANNIKA	-	-	2.4	3.9	6.9	6.0	7.0	7.3	4.5	7.9	6.2	4.9	6.5	5.9
BARZAN	5.5	5.0	3.2	4.0	7.5	7.0	6.1	7.1	5.1	7.7	5.8	6.1	6.5	4.8
* HUNTSVILLE	-	5.9	4.7	4.9	6.4	. 6.7		7.2	5.6	6.8	5.7	5.9	6.7	5. 3
* JOY	4.1	4.7	5.9	4.7	6.1	6.0	6.3	6.6	5.3	5.7	5.8	5.2	6.5	4.3
* KENBLUE	4.1	4.9	4.3	5.4	5.8	6.0	6.0	5.5	4.8	6.5	6.3	5.2	6.3	6.2
* S.D. CERTIFIED	4.2	4.5	3.5	5.1	5.7	6.1	6.0	5.8	4.8	5.7	5.8	4.7	6.1	5.3
LSD VALUE	0.6	0.7	1.4	1.1	1.2	0.7	0.6	0.6	0.7	0.7	1.2	0.7	0.5	1.0

* COMMERCIALLY AVAILABLE VARIETY

1/ TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05). UCR LANDSCAPE PLANT MATERIAL EVALUATION STUDY

TREES

Species

Acacia abyssinica		8)	Cercidium floridum
Acacia aneura	Mulga	9)	Prosopis alba
Acacia minuta	Sweet Acacia	10)	Prosopis chilensis
Acacia pennatula		11)	Prosopis glandulosa
Acacia shaffneri	Twisted Acacia	12)	Vauquelinia californica
Acacia stenophylla	Shoestring Acacia	13)	Yucca angustissima
Acacia willardiana	Palo Blanco	14)	Yucca elata

SHRUBS

Species

15)	Acacia notabilis		33)	Leucophyllum frute
16)	Acacia redolens		34)	Leucophyllum frute
17)	Ambrosia deltoidea	Triangle leaf bursage	35)	Leucophyllum frute
18)	Antigonon leptopus	Queen's Wreath	36)	Leucophyllum frute
19)	Baccharis	'Centennial'	37)	Leucophyllum laevi
20)	Caesalpinia mexicana		38)	Muhlenbergia dumos
21)	Caesalpinia gilliesii	Yellow Bird of Paradise		Muhlenbergia riger
22)	Caesalpinia pulcherrima	Red Bird of Paradise	40)	Oenothera berlandi
23)	Calliandra eriophylla	Fairy Duster	41)	Oenothera spubbii
24)	Dalea bicolor	Silver Dalea	42)	Pennisetum setaceu
25)	Dalea pulchra	Indigo Bush	43)	Pennisetum setaceu
26)	Dalea greggii	Trailing Indigo Bush	44)	
27)	Dasylirion atrotriche	Green Desert Spoon	45)	Ruellia peninsular
28)	Dasylirion wheeleri	Desert Spoon	46)	Saliva coccinea
29)	Encelia farinosa	Brittle Bush	47)	Sophora secundifle
30)	Justicia candicans		48)	Verbena goodingii
31)	Justicia spicigera	Firecracker Plant	49)	Yucca glauca
32)	Leucophyllum candidum	Violet Silver Leaf 'Silver Cloud'		.

Common Name

Common Name

Species

Species

1) 2) 3) 4) 5) 7)

escens escens escens escens igatum sa ens dieri um um

- ris ora

Common Name

Blue Palo Verde Argentine Mesquite Mesquite Texas or Honey Mesqu : Arizona Rosewood

Soap Tree

Common Name

'Green Cloud' Texas Sage or Ranger 'Compacta' 'White Cloud' Chihuahuan Sage Bamboo Muhly Bamboo Muniy Deer Grass Mexican Evening Primrose Evening Primrose 'Cupreum'; Red Fountain Grass Green Fountain Grass Red Three Awn

Texas Mountain Laurel

Soap Weed