Stop #7: Evaluation of Products for Alleviation of Salinity

Marco Schiavon, Pawel Petelewicz, Giulio Cremonese, Toan Khuong, and Jim Baird Department of Botany and Plant Sciences, University of California, Riverside, CA 92521

Objectives:

To evaluate the efficacy of products on turf to reduce stress caused by irrigation with saline water.

<u>Methods:</u>

The plot area was sodded with 'Tifway II' bermudagrass on 6 August 2012 on a Hanford fine sandy loam with no pre-existing salinity issues. All treatments were applied initially on 6 June 2014. The turf is mowed three times per week at 0.625 inches. Standard bermudagrass cultural practices are maintained throughout the study, including 6 lbs N/M/yr and verticutting once/yr (May). Plots are irrigated at 75% ET₀ with water that matches the same ion composition of Colorado River See table below. Every two weeks, plots were evaluated for turf quality, NDVI and volumetric soil water content. In addition Digital Image Analysis and leachate are collected on the same day. Soil samples will be collected at the end of bermudagrass growing season separately for each combination of chemical treatment and replication to assess salinity accumulation in the root zone.

	Saline Irrigation Water	Potable Irrigation Water
рН	7.57	7.82
Hardness	938.23	215.18
Bicarbonate	209.84	214.72
Carbonate	0.01	0.01
EC (dS/m)	4.43	0.61
Na (ppm)	523.9	53.36
CI (ppm)	996.27	31.13
Boron (ppm)	0.11	0.08
SAR (meq/L)	18.3	3.24
Nitrate Nitrogen (ppm)	5.11	5.18
Phosphate (ppm)	0.4	0.01
Potassium (ppm)	129.76	4.16
Magnesium (ppm)	151.99	12.24
Calcium (ppm)	126.03	66
Sulfate (ppm)	707.62	78.1
Manganese (ppm)	0.01	0.01
Iron (ppm)	0.11	0.05

Chemical properties of saline irrigation water used in this study compared to potable irrigation water used elsewhere at the UCR turfgrass facility.

Treatments:

Treatments are applied by hand or using a calibrated CO₂ boom sprayer (2 gal/M). Treatments are watered in with over 1 cm of water immediately following application. For treatment list see table on next page.

Results:

For the third year in a row, DeSal was the treatment that improved turf quality and Dark Green Color Index (DGCI) the most. However, HM1239 also showed positive effects on turf quality and DGCI (Figure 1). NDVI did not detect any differences among treatments. The combination of ACA 2994 and 3245 was the only treatment that reduced EC in the leachate (Figure 2). Nevertheless, no positive effect on bermudagrass was observed on those plots.

No.	Treatment	Company	Rate	Frequency (weeks)
1	Untreated			
	Control			
2	ACA 2994	Aquatrols	8 oz/M	2
3a	ACA 3248	Aquatrols	6 oz/M	2
3b	ACA 2994	-	8 oz/M	8
4	ACA 2994	Aquatrols	8 oz/M	2
4	ACA 3245	-	8 oz/M	2
5a	ACA 1849	Aquatrols	3 oz/M	2
5b	Gypsum		5 lbs/M	4
6a	MST-1410	Macrosorb	6 oz/M	2
6b	SMS-0114		64 oz/A	4
6b	Gypsum		10 lbs/M	4
7	DeSal	Ocean	0.75 oz/M	2
7	StressRx	Organics	6 oz/M	2
7	Exp 5-0-1		6 oz/M	2
8	Crossover	Numerator	5 lb/M	4
	pHacid	Technologies	2.5 oz/M	2
	Revert		6 oz/M	2
9	HM9926	Helena 1.5 oz/M 2		2
10	HM1239	Helena	1.5 oz/M	2

Salinity Alleviation Study Treatment List 2015

Plot Plan Salinity Alleviation Study (Field 12F-4)

North								
113	213	313	413	513	613			
1	4	2	5	3	7			
114	214	314	414	514	614			
2	7	10	4	2	5			
115	215	315	415	515	615			
3	2	3	7	6	4			
116	216	316	416	516	616			
4	10	5	10	9	2			
117	217	317	417	517	617			
5	3	7	1	10	3			
118	218	318	418	518	618			
6	5	4	8	7	1			
119	219	319	419	519	619			
7	1	9	2	5	8			
120	220	320	420	520	620			
8	8	6	9	4	6			
121	221	321	421	521	621			
9	6	1	3	1	10			
122	222	322	422	522	622			
10	9	8	6	8	9			

North

Figure 1. Quality of treatments that performed better than control in at least one rating date.

Figure 2. Quality of treatments that performed better than control in at least one rating date.

Figure 3. EC of leachate collected from plots that decreased salinity in comparison to control in at least one rating date.

