Selective Removal of Persistent Perennial Ryegrass from Bermudagrass Turf

Cheryl Wilen
Area Integrated Pest Management Advisor
Los Angeles, Orange, and San Diego Counties
UC Statewide IPM Program

Brent Barnes and Jim Baird
Department of Botany and Plant Sciences
University of California, Riverside

Objectives: Evaluate existing and experimental herbicides for removal of perennial ryegrass that persists in bermudagrass turf.

Location: UCR Turfgrass Research Center, Riverside, CA

Soil: Hanford fine sandy loam

Site Description: ‘Princess’ bermudagrass overseeded with Ewing Eagle Turfgrass Blend of perennial ryegrass (43% SR4600, 28% SR4220, 25% SR4330) on October 19, 2007

Experimental Design: Randomized complete block with 3 replications

Plot Size: 5’ by 8’

Treatment Dates: July 23, 2009 (8 weeks before Field Day)
July 28, 2009 (Treatments 10, 11 and 15 were applied)
August 20, 2009 (4 weeks before Field Day)
Turflon Ester was applied at 16 oz/A + 0.25% MSO nine days before Field Day to help reduce competition of bermudagrass and allow for easier determination of ryegrass control from herbicide treatments.

Application Information: CO₂ bicycle sprayer; 39 psi (tank)
30 GPA

Ratings: Turfgrass phytotoxicity (1-9, 9 = none); Percent ryegrass control compared to untreated control
Post emergence Control of Persistent Perennial Rye Grass in Bermuda Turf

Plot Map
5x8 plots; 30GPA

North

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

South

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>Rate</th>
<th>Timing Before Field Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revolver</td>
<td>26oz/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>MSO</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMS</td>
<td>3 lb/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Revolver</td>
<td>26oz/A</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td>MSO</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMS</td>
<td>3 lb/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Specticle</td>
<td>0.094oz/1000ft²</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>MSO</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Specticle</td>
<td>0.094oz/1000ft²</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td>MSO</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Celsius</td>
<td>3.5oz/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>MSO</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Celsius</td>
<td>3.5oz/A</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Monument</td>
<td>15g/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Monument</td>
<td>15g/A</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Monument</td>
<td>10g/A</td>
<td>8 weeks and 4 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dow Exp.</td>
<td>16oz/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dow Exp.</td>
<td>8oz/A</td>
<td>8 weeks and 4 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Kerb</td>
<td>3lb/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Kerb</td>
<td>1.5 lb/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>Revolver</td>
<td>18 oz/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSO</td>
<td>0.5% V/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMS</td>
<td>3 lb/A</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Kerb</td>
<td>1.5lb/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>Monument</td>
<td>10g/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Kerb</td>
<td>1.5 lb/A</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td>Dow Exp.</td>
<td>8oz/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIS</td>
<td>0.25% V/V</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Bermudagrass phytotoxicity (1-9, 1 = dead) and percent control of perennial ryegrass (0-100) following application of herbicide treatments on 7-23-09 (trts 10, 11, 15 applied on 7-28-09). Treatments 2, 4, 6, 8, 9, and 11 were applied or repeated on 8-20-09.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phyto</td>
<td>% control</td>
<td>% control</td>
<td>Phyto</td>
<td>% control</td>
<td>Phyto</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>95</td>
<td>97</td>
<td>9</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>43</td>
<td>37</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>50</td>
<td>95</td>
<td>97</td>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>95</td>
<td>98</td>
<td>9</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>18</td>
<td>95</td>
<td>92</td>
<td>7</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0</td>
<td>13</td>
<td>20</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>0</td>
<td>73</td>
<td>57</td>
<td>9</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>15</td>
<td>85</td>
<td>63</td>
<td>9</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>17</td>
<td>88</td>
<td>70</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>8</td>
<td>33</td>
<td>47</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>LSD (P=.05)</td>
<td>0.2</td>
<td>3.5</td>
<td>9.1</td>
<td>10.8</td>
<td>0.4</td>
<td>15.7</td>
</tr>
<tr>
<td>CV</td>
<td>1.8</td>
<td>23.2</td>
<td>11.5</td>
<td>15.4</td>
<td>2.8</td>
<td>24.7</td>
</tr>
</tbody>
</table>

Preliminary Results:

- Revolver, Monument, and Celsius provided the best overall control of ryegrass regardless of application date; however, Celsius did cause some short-term injury to bermudagrass.
- Kerb applied alone or in combination with other herbicides was not as effective for ryegrass control.